Codeforces Round 1016 (Div. 3)题解

题目地址

https://codeforces.com/contest/2093

锐评

在所有题意都理解正确的情况下,整体难度不算太难。但是偏偏存在F这么恶心的题意,样例都不带解释一下的,根本看不懂题。D题也恶心,在于递归过程的拆分,需要点数学,跟打印递归定义的图形一样,写麻了,好在过了。E题居然卡双 log l o g 做法常数,也是恶心。反而是G题很典,太裸了,可惜被D防住了,根本没看到G题。再次陷入“看完所有题不会写,不看完所有题却会写”的魔咒。主要还是自己太菜了,打破不了这个魔咒,大佬们就没这个烦恼。

题解

Problem A. Ideal Generator

题目大意

k k 个正整数组成的数组 a[a1,a2,,ak]=[ak,ak1,,a1] [ a 1 , a 2 , … , a k ] = [ a k , a k − 1 , … , a 1 ] 的情况下称为回文数组(其实就是正着读反着读是一样的)。例如,数组 [1,2,1] [ 1 , 2 , 1 ] [5,1,1,5] [ 5 , 1 , 1 , 5 ] 是回文数组,而数组 [1,2,3] [ 1 , 2 , 3 ] [21,12] [ 21 , 12 ] 不是回文数组。

如果任何整数 n n ( nk ) 都可以表示为一个长度正好为 k k 的回文数组的元素之和,我们就称这个数 k 为理想生成数。数组中的每个元素都必须大于 0 0

例如,数字 1 是一个理想生成数,因为任何自然数 n n 都可以用数组 [n] 生成。然而,数字 2 2 并不是一个理想生成数,因为不存在长度为 2 的和为 3 3 的回文数组。

请判断给定的数字 k 是否是理想生成数。

题解思路:思维

先通过样例观察,发现奇数可以,偶数不行。开始验证,假如和为 k k ,那么全部数组元素为 1 即可,假如和为 k+1 k + 1 ,那么全部数组元素为 1 1 的基础上,有一个数要加上 1 还要是回文数组,那么只能放在最中间的位置上了,不然所放位置对称的那一个位置就不相等了。又因为 n n 是连续的,所以差值为 1 只有数组长度是奇数才能满足,每次都在最中间位置加上 1 1 。时间复杂度为 O(1)

参考代码(C++)

#include <bits/stdc++.h>
using namespace std;
int n;

void solve() {
    cin >> n;
    cout << ((n & 1) ? "YES\n" : "NO\n");
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--)
        solve();
    return 0;
}

Problem B. Expensive Number

题目大意

正整数 n n 的代价被定义为数字 n 除以其数位之和的结果。

例如,数字 104 104 的代价是 1041+0+4=20.8 104 1 + 0 + 4 = 20.8 ,数字 111 111 的代价是 1111+1+1=37 111 1 + 1 + 1 = 37

给你一个不包含前导零的正整数 n n 。你可以从数字 n 中删除任意数位(包括不删除),这样剩下的数字至少包含一位数,并且严格大于零。剩下的数字不能重新排列。因此,你可能得到一个前导为零的数字。

例如,给你一个数字 103554 103554 。如果去掉 1 1 4 和一个数字 5 5 ,最后得到的数字是 035 ,其代价是 0350+3+5=4.375 035 0 + 3 + 5 = 4.375

为了使代价最小,你需要从这个数字中删除最少多少个数字?

题解思路:贪心

首先,一个数字的数位之和是不可能大于这个数字的,最多和它相等。那么代价最小意味着什么?显然就是相等。所以只有一位数字时代价达到最小,代价为 1 1 。因为题目删除数位后允许有前导 0 ,所以选定某个数字前面的 0 0 可以不删除。又因为题目要求删除后组成的这个数必须严格大于 0 ,所以我们要找一个非 0 0 数位。因为前导 0 可以保留,后导 0 0 不能保留(保留就不是个位数了),所以我们倒着枚举,找到第一个非 0 数位位置,将这个位置前面的非 0 0 数位删除以及后面的数位删除,删除的数位个数即是答案。时间复杂度为 O(n)

参考代码(C++)

#include <bits/stdc++.h>
using namespace std;
string str;

void solve() {
    cin >> str;
    int n = str.size();
    int id = n - 1;
    for (int i = n - 1; i >= 0; --i)
        if (str[i] != '0') {
            id = i;
            break;
        }
    int ans = n - 1 - id;
    for (int i = id - 1; i >= 0; --i)
        if (str[i] != '0')
            ++ans;
    cout << ans << '\n';
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--)
        solve();
    return 0;
}

Problem C. Simple Repetition

题目大意

帕夏喜欢质数!为了找到生成质数的新方法,他再次对互联网上的一种算法产生了兴趣:

  • 要得到一个新数字 y y ,重复 k 次数字 x x 的十进制表示 x (不含前导零)。

例如, x=52 x = 52 k=3 k = 3 可以得到 y=525252 y = 525252 x=6 x = 6 k=7 k = 7 可以得到 y=6666666 y = 6666666

帕夏非常希望得到的数字 y y 是质数,但他还不知道如何检验这种算法生成的数字的质性。请帮助帕夏,告诉他 y 是否是质数!

如果一个整数 x 只有 2 个不同的除数 1 和 x ,那么这个整数 x 就是质数。例如, 13 是质数,因为它只有 2 个除数: 1 和 13 。请注意,数字 1 不是质数,因为它只有一个除数。

题解思路:思维/分类讨论

我们来一一分析下。

  • k=1 k = 1 ,显然只需要判定 x x 是否质数。
  • k>1 ,即 x x 至少重复了 2 次,设 x x n 个数位,那么 y y 显然有一个除数 x ,使得 yx=a100n1a200n1ak y x = a 1 0 ⋯ 0 ⏟ n − 1 个 a 2 0 ⋯ 0 ⏟ n − 1 个 … a k ,其中 ai=1,1ik a i = 1 , 1 ≤ i ≤ k 。那么只要 1<x<y 1 < x < y y y 必然不是质数,显然 x<y 必然成立,所以只需要再单独判断一下 x x 1 的情况即可。

根据上面的分析,问题得解。时间复杂度为 O(1) O ( 1 )

参考代码(C++)

#include <bits/stdc++.h>
using namespace std;
int n, m;

bool check(int x) {
    if (x < 2)
        return false;
    for (int i = 2; i * i <= x; ++i)
        if (x % i == 0)
            return false;
    return true;
}

void solve() {
    cin >> n >> m;
    if (m == 1)
        cout << (check(n) ? "YES\n" : "NO\n");
    else if (n == 1) {
        int x = 0;
        for (int i = 0; i < m; ++i)
            x = x * 10 + 1;
        cout << (check(x) ? "YES\n" : "NO\n");
    } else
        cout << "NO\n";
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--)
        solve();
    return 0;
}

Problem D. Skibidi Table

题目大意

瓦迪姆喜欢用整数填充方形表格。不过今天他想到了一个好玩的方法!以大小为 2×2 2 × 2 的表格为例,表格的行从上到下编号,列从左到右编号。我们将 1 1 置于左上角单元格, 2 置于右下角单元格, 3 3 置于左下角单元格, 4 置于右上角单元格。这就是他所需要的全部乐趣!

幸运的是,瓦迪姆有一个大小为 2n×2n 2 n × 2 n 的表格。他计划用从 1 1 22n 的整数按升序填满它。为了填满这样一个大表,瓦迪姆将把它分成 4 4 个相等的方表,先填满左上角的表,然后填满右下角的表,接着填满左下角的表,最后填满右上角的表。在填满每张小方表的过程中,他又会把每张小方表分割成更小的表,直到填满 2×2 大小的方表为止。

现在瓦迪姆迫不及待地想开始填表,但是他有两类 q q 个问题:

  • x 行第 y y 列的单元格中的数字是多少
  • 数字 d 位于哪个单元格坐标

    帮助回答瓦迪姆的问题。

    题解思路:DFS

    题意倒是很直接,思路也很明确,就是不断DFS缩小区域。但是这个区域怎么设计还真是恶心,会的很会,不会的真的会卡很久,看群友有被卡两小时的。

    首先对于块的大小,假如当前处于第 n n 层,块的大小为 2n1×2n1 ,即是宽高各减一半。其次是对于坐标步长,根据前面分析(宽高各减一半),可知步长就是 2n1 2 n − 1 。知道这两个性质就好办了,只需要知道当前处于第几层,以及当前层的左上角坐标,即可一步步缩小范围,直到不能再缩小,即是答案,详见代码。时间复杂度为 O(nq) O ( n q )

    参考代码(C++)

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    using pii = pair<int, int>;
    int n, q;
    
    ll dfs1(int cur, int l, int r, int x, int y) {
        // cout << "dfs1:" << cur << ':' << l << ':' << r << ':' << x << ':' << y << '\n';
        if (l == x && r == y)
            return 1;
        ll dt = 1LL << (cur - 1);
        ll dd = dt * dt;
        if (x >= l + dt && y >= r + dt)
            return dd + dfs1(cur - 1, l + dt, r + dt, x, y);
        if (x >= l + dt)
            return (dd << 1) + dfs1(cur - 1, l + dt, r, x, y);
        if (y >= r + dt)
            return 3 * dd + dfs1(cur - 1, l, r + dt, x, y);
        return dfs1(cur - 1, l, r, x, y);
    }
    
    pii dfs2(int cur, int l, int r, ll d) {
        // cout << "dfs2:" << cur << ':' << l << ':' << r << ':' << d << '\n';
        if (d == 1)
            return {l, r};
        ll dt = 1LL << (cur - 1);
        ll dd = dt * dt;
        if (d > 3 * dd)
            return dfs2(cur - 1, l, r + dt, d - 3 * dd);
        if (d > (dd << 1))
            return dfs2(cur - 1, l + dt, r, d - (dd << 1));
        if (d > dd)
            return dfs2(cur - 1, l + dt, r + dt, d - dd);
        return dfs2(cur - 1, l, r, d);
    }
    
    void solve() {
        cin >> n >> q;
        string op;
        int x, y;
        ll d;
        while (q--) {
            cin >> op;
            if (op == "->") {
                cin >> x >> y;
                cout << dfs1(n, 1, 1, x, y) << '\n';
            } else {
                cin >> d;
                pii ans = dfs2(n, 1, 1, d);
                cout << ans.first << ' ' << ans.second << '\n';
            }
        }
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t = 1;
        cin >> t;
        while (t--)
            solve();
        return 0;
    }
    

    Problem E. Min Max MEX

    题目大意

    给你一个长度为 n n 的数组 a 和一个数字 k k

    子数组的定义是数组中一个或多个连续元素的序列。你需要将数组 a 分割成 k k 个不重叠的子数组 b1,b2,,bk ,使得这些子数组的合集等于整个数组。此外,你需要最大化 x x 的值,即 x=min(MEX(bi)),1ik

    MEX(v) M E X ( v ) 表示数组 v v 中没有的最小非负整数。

    题解思路:二分

    对于 u=MEX(v) ,如果选择数组 v v 的一部分数组成数组 vt ,那么对于所有 w<u w < u ,是否都能找到 w=MEX(vt) w = M E X ( v t ) ?答案是肯定的。所以我们考虑二分,下限 l=0 l = 0 ,上限 r=n r = n (因为数组顶多是 [0,1,,n1] [ 0 , 1 , … , n − 1 ] )。那么我们怎么去check呢?对于 MEX M E X u u ,我们只需要维护一个集合,然后遍历整个数组,对于每个元素,满足 ai<u,0i<n ,就将其加入集合,当集合元素个数达到了 u u ,然后计数加一(表示可以划分为一个子数组,满足 MEXu),并且清空当前集合。这样到最后,只要计数大于等于 k k ,表示可以合理划分。时间复杂度为 O(nlognlogn) (check用到了set,换成数组每次标记取反可以降到 O(nlogn) O ( n l o g n ) )。

    PS:此题居然卡双 log l o g 做法常数,真是无语啊!

    参考代码(C++)

    log l o g 超时代码。

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    using pii = pair<int, int>;
    const int maxn = 200'005;
    int a[maxn];
    int n, m;
    
    bool check(int x) {
        set<int> st;
        for (int i = 0; i < x; ++i)
            st.insert(i);
        if (st.empty())
            return true;
        set<int> stc;
        int cnt = 0;
        for (int i = 0; i < n; ++i) {
            if (a[i] < x)
                stc.insert(a[i]);
            if (stc.size() == st.size()) {
                ++cnt;
                stc.clear();
                if (cnt >= m)
                    return true;
            }
        }
        return cnt >= m;
    }
    
    void solve() {
        cin >> n >> m;
        for (int i = 0; i < n; ++i)
            cin >> a[i];
        int l = 0, r = n + 1, ans = -1;
        while (l <= r) {
            int mid = (l + r) >> 1;
            if (check(mid)) {
                ans = mid;
                l = mid + 1;
            } else
                r = mid - 1;
        }
        cout << ans << '\n';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t = 1;
        cin >> t;
        while (t--)
            solve();
        return 0;
    }
    

    log l o g 通过代码。

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    using pii = pair<int, int>;
    const int maxn = 200'005;
    int a[maxn];
    int n, m;
    
    bool check(int x) {
        set<int> st;
        int cnt = 0;
        for (int i = 0; i < n; ++i) {
            if (a[i] < x)
                st.insert(a[i]);
            if (st.size() == x) {
                ++cnt;
                st.clear();
                if (cnt >= m)
                    return true;
            }
        }
        return cnt >= m;
    }
    
    void solve() {
        cin >> n >> m;
        for (int i = 0; i < n; ++i)
            cin >> a[i];
        int l = 1, r = n, ans = 0;
        while (l <= r) {
            int mid = (l + r) >> 1;
            if (check(mid)) {
                ans = mid;
                l = mid + 1;
            } else
                r = mid - 1;
        }
        cout << ans << '\n';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t = 1;
        cin >> t;
        while (t--)
            solve();
        return 0;
    }
    

    log l o g 通过代码。

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    using pii = pair<int, int>;
    const int maxn = 200'005;
    int a[maxn];
    bool vis[maxn];
    int n, m;
    
    bool check(int x) {
        for (int i = 0; i < x; ++i)
            vis[i] = false;
        bool f = true;
        int cnt = 0, cur = 0;
        for (int i = 0; i < n; ++i) {
            if (a[i] < x) {
                if (vis[a[i]] != f) {
                    ++cur;
                    vis[a[i]] = f;
                }
            }
            if (cur == x) {
                ++cnt;
                cur = 0;
                f = !f;
                if (cnt >= m)
                    return true;
            }
        }
        return cnt >= m;
    }
    
    void solve() {
        cin >> n >> m;
        for (int i = 0; i < n; ++i)
            cin >> a[i];
        int l = 1, r = n, ans = 0;
        while (l <= r) {
            int mid = (l + r) >> 1;
            if (check(mid)) {
                ans = mid;
                l = mid + 1;
            } else
                r = mid - 1;
        }
        cout << ans << '\n';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t = 1;
        cin >> t;
        while (t--)
            solve();
        return 0;
    }
    

    Problem F. Hackers and Neural Networks

    题目大意

    黑客们再次试图利用神经网络的输出创建娱乐短语。这一次,他们想获得长度为 n n 的字符串数组 a

    最初,他们有一个长度为 n n 的数组 c ,其中充满了空白,用符号 表示。因此,如果 n=4 ,则初始值为 c=[,,,] c = [ ∗ , ∗ , ∗ , ∗ ]

    黑客可以访问 m m 个神经网络,每个神经网络都有自己的请求答案版本--长度为 n 的字符串数组 bi b i

    黑客试图通过以下操作从数组 c c 中获取数组 a

    • 选择神经网络 i i ,对数组 c 执行下一步操作:选择一个随机空白,例如在位置 j j 处,将 cj 替换为 bi,j b i , j

      例如,如果选择了第一个神经网络 b1=[«I»,«love»,«apples»] b 1 = [ «I» , «love» , «apples» ] ,当前 c=[,«like»,] c = [ ∗ , «like» , ∗ ] ,那么在对第一个神经网络进行操作后, c c 可能会变成 [«I»,«like»,][,«like»,«apples»] [ ∗ , «like» , «apples» ]

    • 选择位置 j j 并将 cj 替换为空白。

    不幸的是,由于黑客访问神经网络的方式,他们只能在所有操作完成后才能看到修改后的数组 c c ,因此他们必须事先指定整个操作序列。

    然而,神经网络的随机行为可能会导致永远无法获得所需的数组,或者获得所需的数组需要过多的操作。

    因此,黑客们希望您能帮助他们选择一个操作序列,以保证在最少的操作次数内获得数组 a

    更具体地说,如果存在一个操作序列可以保证从数组 c c 中获得数组 a ,那么在所有这样的序列中,找出一个操作次数最少的序列,并输出其中的操作次数。

    如果没有将数组 c c 转换成数组 a 的操作序列,则输出 1 − 1

    题解思路:贪心

    题意真的很长且很拉,真的看完好像不知道要求什么?让我们再细细品味一下!反正就是进行两个操作嘛,只要对应位置的字符串不对就一定要继续操作。只要操作,那么操作次数必然会增加。

    假如某个操作后,某个位置已经是正确的,下一次操作你会不会去改它?显然不会了,不然你还得再至少进行一次操作二以及至少随机一次操作一,而且随机后不一定是对的,何必呢?

    如果所有位置都是空的,你会不会进行操作二?显然也不会,白白浪费一次操作嘛。所以第一次操作肯定是操作一,这是个随机过程。

    通过上面的分析,我们唯一能决定的就是可以选择跑哪个神经网络。从概率论角度来说,我们当然希望选择命中概率更高的,这样所得的期望就越大,后续所需要的操作就更少。所以第一次操作就至关重要了,我们就选命中概率最大的神经网络,这样我们就能保证 n n 次操作后,随机正确位置最大。这样所有位置都被填满了,最后对不正确的位置,我们只需要先执行一次操作二,再找到一个神经网络,其对应位置存在正确字符串,因为只会空白位置随机,而当前空白位置只有一个,显然这是一个必然事件。

    上面操作一定是最优的吗?一定的。假设你选择某个神经网络的命中率是 xy ,你把其他所有的神经网络全部组合起来,命中率形如 x+ay+b x + a y + b ,其不可能更大。

    对于不存在的情况,显然所有对应位置都没有目标串,就无法做到。时间复杂度为 O(mnmax(|bi,j|)) O ( m n max ( | b i , j | ) )

    参考代码(C++)

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    using pii = pair<int, int>;
    const int maxn = 505;
    string p[maxn], str[maxn][maxn];
    int cntr[maxn], cntc[maxn];
    int n, m;
    
    void solve() {
        cin >> n >> m;
        for (int i = 0; i < n; ++i) {
            cin >> p[i];
            cntc[i] = 0;
        }
        for (int i = 0; i < m; ++i) {
            cntr[i] = 0;
            for  (int j = 0; j < n; ++j) {
                cin >> str[i][j];
                if (str[i][j] == p[j]) {
                    ++cntc[j];
                    ++cntr[i];
                }
            }
        }
        for (int i = 0; i < n; ++i)
            if (cntc[i] == 0) {
                cout << "-1\n";
                return;
            }
        int maxc = 0;
        for (int i = 0; i < m; ++i)
            maxc = max(maxc, cntr[i]);
        cout << (n + ((n - maxc) << 1)) << '\n';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t = 1;
        cin >> t;
        while (t--)
            solve();
        return 0;
    }
    

    Problem G. Shorten the Array

    题目大意

    长度为 m m 的数组 b 的美感定义为所有可能数对 1ijm 1 ≤ i ≤ j ≤ m 中的 max(bibj) max ( b i ⊕ b j ) ,其中 xy x ⊕ y 是数字 x x ybitwise XOR。我们将数组 b b 的美感表示为 f(b)

    如果数组 b b 中有 f(b)k ,那么这个数组 b b 就叫做美丽数组。

    最近,科斯佳从商店买了一个长度为 n 的数组 a a 。他认为这个数组太长了,所以打算从中剪切出一些美丽的子数组。也就是说,他想选择数字 lr r ( 1lrn ),这样数组 alr a l … r 就很美丽了。这样一个子数组的长度为 rl+1 r − l + 1 。整个数组 a a 也被视为一个子数组(包含 l=1r=n r = n )。

    你的任务是找出数组 a a 中最短的美丽子数组的长度。如果没有一个子数组是美丽的,那么你应该输出数字 1

    题解思路:双指针+字典树Trie

    首先,对于每个 l l ,如果找到第一个满足条件的 r(rl) ,那么显然 r+1(r<n) r + 1 ( r < n ) 也可以。既然这样,那么我们维护一个双指针,对于每个左指针,不断扩展右指针,直到找到第一个满足条件的位置,更新答案即可。那么怎么快速计算出当前区间是否可以满足条件呢?很容易就会想到字典树求当前区间可以得到的最大异或值。时间复杂度为 O(n) O ( n ) (计算次数实际为 30n 30 n ,常数忽略,但实际运行时间还是要考虑的)。

    参考代码(C++)

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    using pii = pair<int, int>;
    const int maxn = 200'005;
    const int maxnode = 6'000'005;
    const int sigma_size = 2;
    struct trie {
        int child[maxnode][sigma_size];
        int value[maxnode];
        int size;
    
        void init() {
            size = 1;
            memset(child[0], 0, sizeof(child[0]));
        }
    
        void insert(int x, int y) {
            int pos = 0;
            for (int i = 29; i >= 0; --i) {
                int id = (x >> i) & 1;
                if (!child[pos][id]) {
                    memset(child[size], 0, sizeof(child[size]));
                    value[size] = 0;
                    child[pos][id] = size++;
                }
                pos = child[pos][id];
                value[pos] += y;
            }
        }
    
        int query(int x) {
            // cout << "query: " << x << '\n';
            int pos = 0, ans = 0;
            for (int i = 29; i >= 0; --i) {
                int id = (x >> i) & 1;
                int idx = id ^ 1;
                int p = child[pos][idx];
                if (p && value[p]) {
                    ans |= 1 << i;
                    pos = p;
                } else {
                    p = child[pos][id];
                    if (p && value[p])
                        pos = p;
                    else
                        return -1;
                }
            }
            // cout << "query: ans = " << ans << '\n';
            return ans;
        }
    } tr;
    int a[maxn];
    int n, m;
    
    void solve() {
        cin >> n >> m;
        for (int i = 0; i < n; ++i)
            cin >> a[i];
        if (m == 0) {
            cout << "1\n";
            return;
        }
        tr.init();
        int l = 0, r = 0, ans = n + 1;
        while (r < n) {
            // cout << l << ", " << r << endl;
            while (r < n && tr.query(a[r]) < m)
                tr.insert(a[r++], 1);
            if (r < n)
                ans = min(ans, r - l + 1);
            tr.insert(a[l++], -1);
            if (l > r)
                r = l;
        }
        cout << (ans == n + 1 ? -1 : ans) << '\n';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout.tie(nullptr);
        int t = 1;
        cin >> t;
        while (t--)
            solve();
        return 0;
    }
    
    原创作者: Silenceneo-xw 转载于: https://www.cnblogs.com/Silenceneo-xw/p/18817323
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值