题目地址
https://codeforces.com/contest/2093
锐评
在所有题意都理解正确的情况下,整体难度不算太难。但是偏偏存在F这么恶心的题意,样例都不带解释一下的,根本看不懂题。D题也恶心,在于递归过程的拆分,需要点数学,跟打印递归定义的图形一样,写麻了,好在过了。E题居然卡双 log l o g 做法常数,也是恶心。反而是G题很典,太裸了,可惜被D防住了,根本没看到G题。再次陷入“看完所有题不会写,不看完所有题却会写”的魔咒。主要还是自己太菜了,打破不了这个魔咒,大佬们就没这个烦恼。
题解
Problem A. Ideal Generator
题目大意
由 k k 个正整数组成的数组 在 [a1,a2,…,ak]=[ak,ak−1,…,a1] [ a 1 , a 2 , … , a k ] = [ a k , a k − 1 , … , a 1 ] 的情况下称为回文数组(其实就是正着读反着读是一样的)。例如,数组 [1,2,1] [ 1 , 2 , 1 ] 和 [5,1,1,5] [ 5 , 1 , 1 , 5 ] 是回文数组,而数组 [1,2,3] [ 1 , 2 , 3 ] 和 [21,12] [ 21 , 12 ] 不是回文数组。
如果任何整数 n n ( ) 都可以表示为一个长度正好为 k k 的回文数组的元素之和,我们就称这个数 为理想生成数。数组中的每个元素都必须大于 0 0 。
例如,数字 是一个理想生成数,因为任何自然数 n n 都可以用数组 生成。然而,数字 2 2 并不是一个理想生成数,因为不存在长度为 的和为 3 3 的回文数组。
请判断给定的数字 是否是理想生成数。
题解思路:思维
先通过样例观察,发现奇数可以,偶数不行。开始验证,假如和为 k k ,那么全部数组元素为 即可,假如和为 k+1 k + 1 ,那么全部数组元素为 1 1 的基础上,有一个数要加上 还要是回文数组,那么只能放在最中间的位置上了,不然所放位置对称的那一个位置就不相等了。又因为 n n 是连续的,所以差值为 只有数组长度是奇数才能满足,每次都在最中间位置加上 1 1 。时间复杂度为 。
参考代码(C++)
#include <bits/stdc++.h>
using namespace std;
int n;
void solve() {
cin >> n;
cout << ((n & 1) ? "YES\n" : "NO\n");
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t = 1;
cin >> t;
while (t--)
solve();
return 0;
}
Problem B. Expensive Number
题目大意
正整数 n n 的代价被定义为数字 除以其数位之和的结果。
例如,数字 104 104 的代价是 1041+0+4=20.8 104 1 + 0 + 4 = 20.8 ,数字 111 111 的代价是 1111+1+1=37 111 1 + 1 + 1 = 37 。
给你一个不包含前导零的正整数 n n 。你可以从数字 中删除任意数位(包括不删除),这样剩下的数字至少包含一位数,并且严格大于零。剩下的数字不能重新排列。因此,你可能得到一个前导为零的数字。
例如,给你一个数字 103554 103554 。如果去掉 1 1 、 和一个数字 5 5 ,最后得到的数字是 ,其代价是 0350+3+5=4.375 035 0 + 3 + 5 = 4.375 。
为了使代价最小,你需要从这个数字中删除最少多少个数字?
题解思路:贪心
首先,一个数字的数位之和是不可能大于这个数字的,最多和它相等。那么代价最小意味着什么?显然就是相等。所以只有一位数字时代价达到最小,代价为 1 1 。因为题目删除数位后允许有前导 ,所以选定某个数字前面的 0 0 可以不删除。又因为题目要求删除后组成的这个数必须严格大于 ,所以我们要找一个非 0 0 数位。因为前导 可以保留,后导 0 0 不能保留(保留就不是个位数了),所以我们倒着枚举,找到第一个非 数位位置,将这个位置前面的非 0 0 数位删除以及后面的数位删除,删除的数位个数即是答案。时间复杂度为 。
参考代码(C++)
#include <bits/stdc++.h>
using namespace std;
string str;
void solve() {
cin >> str;
int n = str.size();
int id = n - 1;
for (int i = n - 1; i >= 0; --i)
if (str[i] != '0') {
id = i;
break;
}
int ans = n - 1 - id;
for (int i = id - 1; i >= 0; --i)
if (str[i] != '0')
++ans;
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t = 1;
cin >> t;
while (t--)
solve();
return 0;
}
Problem C. Simple Repetition
题目大意
帕夏喜欢质数!为了找到生成质数的新方法,他再次对互联网上的一种算法产生了兴趣:
- 要得到一个新数字 y y ,重复 次数字 x x 的十进制表示 (不含前导零)。
例如, x=52 x = 52 和 k=3 k = 3 可以得到 y=525252 y = 525252 , x=6 x = 6 和 k=7 k = 7 可以得到 y=6666666 y = 6666666 。
帕夏非常希望得到的数字 y y 是质数,但他还不知道如何检验这种算法生成的数字的质性。请帮助帕夏,告诉他 是否是质数!
如果一个整数 x 只有 2 个不同的除数 1 和 x ,那么这个整数 x 就是质数。例如, 13 是质数,因为它只有 2 个除数: 1 和 13 。请注意,数字 1 不是质数,因为它只有一个除数。
题解思路:思维/分类讨论
我们来一一分析下。
- k=1 k = 1 ,显然只需要判定 x x 是否质数。
- ,即 x x 至少重复了 次,设 x x 有 个数位,那么 y y 显然有一个除数 ,使得 yx=a10⋯0n−1个a20⋯0n−1个…ak y x = a 1 0 ⋯ 0 ⏟ n − 1 个 a 2 0 ⋯ 0 ⏟ n − 1 个 … a k ,其中 ai=1,1≤i≤k a i = 1 , 1 ≤ i ≤ k 。那么只要 1<x<y 1 < x < y , y y 必然不是质数,显然 必然成立,所以只需要再单独判断一下 x x 为 的情况即可。
根据上面的分析,问题得解。时间复杂度为 O(1) O ( 1 ) 。
参考代码(C++)
#include <bits/stdc++.h>
using namespace std;
int n, m;
bool check(int x) {
if (x < 2)
return false;
for (int i = 2; i * i <= x; ++i)
if (x % i == 0)
return false;
return true;
}
void solve() {
cin >> n >> m;
if (m == 1)
cout << (check(n) ? "YES\n" : "NO\n");
else if (n == 1) {
int x = 0;
for (int i = 0; i < m; ++i)
x = x * 10 + 1;
cout << (check(x) ? "YES\n" : "NO\n");
} else
cout << "NO\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t = 1;
cin >> t;
while (t--)
solve();
return 0;
}
Problem D. Skibidi Table
题目大意
瓦迪姆喜欢用整数填充方形表格。不过今天他想到了一个好玩的方法!以大小为 2×2 2 × 2 的表格为例,表格的行从上到下编号,列从左到右编号。我们将 1 1 置于左上角单元格, 置于右下角单元格, 3 3 置于左下角单元格, 置于右上角单元格。这就是他所需要的全部乐趣!
幸运的是,瓦迪姆有一个大小为 2n×2n 2 n × 2 n 的表格。他计划用从 1 1 到 的整数按升序填满它。为了填满这样一个大表,瓦迪姆将把它分成 4 4 个相等的方表,先填满左上角的表,然后填满右下角的表,接着填满左下角的表,最后填满右上角的表。在填满每张小方表的过程中,他又会把每张小方表分割成更小的表,直到填满 大小的方表为止。
现在瓦迪姆迫不及待地想开始填表,但是他有两类 q q 个问题:
- 第 行第 y y 列的单元格中的数字是多少
- 数字 位于哪个单元格坐标
帮助回答瓦迪姆的问题。
题解思路:DFS
题意倒是很直接,思路也很明确,就是不断DFS缩小区域。但是这个区域怎么设计还真是恶心,会的很会,不会的真的会卡很久,看群友有被卡两小时的。
首先对于块的大小,假如当前处于第 n n 层,块的大小为 ,即是宽高各减一半。其次是对于坐标步长,根据前面分析(宽高各减一半),可知步长就是 2n−1 2 n − 1 。知道这两个性质就好办了,只需要知道当前处于第几层,以及当前层的左上角坐标,即可一步步缩小范围,直到不能再缩小,即是答案,详见代码。时间复杂度为 O(nq) O ( n q ) 。
参考代码(C++)
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; int n, q; ll dfs1(int cur, int l, int r, int x, int y) { // cout << "dfs1:" << cur << ':' << l << ':' << r << ':' << x << ':' << y << '\n'; if (l == x && r == y) return 1; ll dt = 1LL << (cur - 1); ll dd = dt * dt; if (x >= l + dt && y >= r + dt) return dd + dfs1(cur - 1, l + dt, r + dt, x, y); if (x >= l + dt) return (dd << 1) + dfs1(cur - 1, l + dt, r, x, y); if (y >= r + dt) return 3 * dd + dfs1(cur - 1, l, r + dt, x, y); return dfs1(cur - 1, l, r, x, y); } pii dfs2(int cur, int l, int r, ll d) { // cout << "dfs2:" << cur << ':' << l << ':' << r << ':' << d << '\n'; if (d == 1) return {l, r}; ll dt = 1LL << (cur - 1); ll dd = dt * dt; if (d > 3 * dd) return dfs2(cur - 1, l, r + dt, d - 3 * dd); if (d > (dd << 1)) return dfs2(cur - 1, l + dt, r, d - (dd << 1)); if (d > dd) return dfs2(cur - 1, l + dt, r + dt, d - dd); return dfs2(cur - 1, l, r, d); } void solve() { cin >> n >> q; string op; int x, y; ll d; while (q--) { cin >> op; if (op == "->") { cin >> x >> y; cout << dfs1(n, 1, 1, x, y) << '\n'; } else { cin >> d; pii ans = dfs2(n, 1, 1, d); cout << ans.first << ' ' << ans.second << '\n'; } } } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; cin >> t; while (t--) solve(); return 0; }
Problem E. Min Max MEX
题目大意
给你一个长度为 n n 的数组 和一个数字 k k 。
子数组的定义是数组中一个或多个连续元素的序列。你需要将数组 分割成 k k 个不重叠的子数组 ,使得这些子数组的合集等于整个数组。此外,你需要最大化 x x 的值,即 。
MEX(v) M E X ( v ) 表示数组 v v 中没有的最小非负整数。
题解思路:二分
对于 ,如果选择数组 v v 的一部分数组成数组 ,那么对于所有 w<u w < u ,是否都能找到 w=MEX(vt) w = M E X ( v t ) ?答案是肯定的。所以我们考虑二分,下限 l=0 l = 0 ,上限 r=n r = n (因为数组顶多是 [0,1,…,n−1] [ 0 , 1 , … , n − 1 ] )。那么我们怎么去check呢?对于 MEX M E X 为 u u ,我们只需要维护一个集合,然后遍历整个数组,对于每个元素,满足 ,就将其加入集合,当集合元素个数达到了 u u ,然后计数加一(表示可以划分为一个子数组,满足 ),并且清空当前集合。这样到最后,只要计数大于等于 k k ,表示可以合理划分。时间复杂度为 (check用到了set,换成数组每次标记取反可以降到 O(nlogn) O ( n l o g n ) )。
PS:此题居然卡双 log l o g 做法常数,真是无语啊!
参考代码(C++)
双 log l o g 超时代码。
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; const int maxn = 200'005; int a[maxn]; int n, m; bool check(int x) { set<int> st; for (int i = 0; i < x; ++i) st.insert(i); if (st.empty()) return true; set<int> stc; int cnt = 0; for (int i = 0; i < n; ++i) { if (a[i] < x) stc.insert(a[i]); if (stc.size() == st.size()) { ++cnt; stc.clear(); if (cnt >= m) return true; } } return cnt >= m; } void solve() { cin >> n >> m; for (int i = 0; i < n; ++i) cin >> a[i]; int l = 0, r = n + 1, ans = -1; while (l <= r) { int mid = (l + r) >> 1; if (check(mid)) { ans = mid; l = mid + 1; } else r = mid - 1; } cout << ans << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; cin >> t; while (t--) solve(); return 0; }
双 log l o g 通过代码。
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; const int maxn = 200'005; int a[maxn]; int n, m; bool check(int x) { set<int> st; int cnt = 0; for (int i = 0; i < n; ++i) { if (a[i] < x) st.insert(a[i]); if (st.size() == x) { ++cnt; st.clear(); if (cnt >= m) return true; } } return cnt >= m; } void solve() { cin >> n >> m; for (int i = 0; i < n; ++i) cin >> a[i]; int l = 1, r = n, ans = 0; while (l <= r) { int mid = (l + r) >> 1; if (check(mid)) { ans = mid; l = mid + 1; } else r = mid - 1; } cout << ans << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; cin >> t; while (t--) solve(); return 0; }
单 log l o g 通过代码。
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; const int maxn = 200'005; int a[maxn]; bool vis[maxn]; int n, m; bool check(int x) { for (int i = 0; i < x; ++i) vis[i] = false; bool f = true; int cnt = 0, cur = 0; for (int i = 0; i < n; ++i) { if (a[i] < x) { if (vis[a[i]] != f) { ++cur; vis[a[i]] = f; } } if (cur == x) { ++cnt; cur = 0; f = !f; if (cnt >= m) return true; } } return cnt >= m; } void solve() { cin >> n >> m; for (int i = 0; i < n; ++i) cin >> a[i]; int l = 1, r = n, ans = 0; while (l <= r) { int mid = (l + r) >> 1; if (check(mid)) { ans = mid; l = mid + 1; } else r = mid - 1; } cout << ans << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; cin >> t; while (t--) solve(); return 0; }
Problem F. Hackers and Neural Networks
题目大意
黑客们再次试图利用神经网络的输出创建娱乐短语。这一次,他们想获得长度为 n n 的字符串数组 。
最初,他们有一个长度为 n n 的数组 ,其中充满了空白,用符号 ∗ ∗ 表示。因此,如果 ,则初始值为 c=[∗,∗,∗,∗] c = [ ∗ , ∗ , ∗ , ∗ ] 。
黑客可以访问 m m 个神经网络,每个神经网络都有自己的请求答案版本--长度为 的字符串数组 bi b i 。
黑客试图通过以下操作从数组 c c 中获取数组 :
-
选择神经网络 i i ,对数组 执行下一步操作:选择一个随机的空白,例如在位置 j j 处,将 替换为 bi,j b i , j 。
例如,如果选择了第一个神经网络 b1=[«I»,«love»,«apples»] b 1 = [ «I» , «love» , «apples» ] ,当前 c=[∗,«like»,∗] c = [ ∗ , «like» , ∗ ] ,那么在对第一个神经网络进行操作后, c c 可能会变成 或 [∗,«like»,«apples»] [ ∗ , «like» , «apples» ] 。
-
选择位置 j j 并将 替换为空白。
不幸的是,由于黑客访问神经网络的方式,他们只能在所有操作完成后才能看到修改后的数组 c c ,因此他们必须事先指定整个操作序列。
然而,神经网络的随机行为可能会导致永远无法获得所需的数组,或者获得所需的数组需要过多的操作。
因此,黑客们希望您能帮助他们选择一个操作序列,以保证在最少的操作次数内获得数组 。
更具体地说,如果存在一个操作序列可以保证从数组 c c 中获得数组 ,那么在所有这样的序列中,找出一个操作次数最少的序列,并输出其中的操作次数。
如果没有将数组 c c 转换成数组 的操作序列,则输出 −1 − 1 。
题解思路:贪心
题意真的很长且很拉,真的看完好像不知道要求什么?让我们再细细品味一下!反正就是进行两个操作嘛,只要对应位置的字符串不对就一定要继续操作。只要操作,那么操作次数必然会增加。
假如某个操作后,某个位置已经是正确的,下一次操作你会不会去改它?显然不会了,不然你还得再至少进行一次操作二以及至少随机一次操作一,而且随机后不一定是对的,何必呢?
如果所有位置都是空的,你会不会进行操作二?显然也不会,白白浪费一次操作嘛。所以第一次操作肯定是操作一,这是个随机过程。
通过上面的分析,我们唯一能决定的就是可以选择跑哪个神经网络。从概率论角度来说,我们当然希望选择命中概率更高的,这样所得的期望就越大,后续所需要的操作就更少。所以第一次操作就至关重要了,我们就选命中概率最大的神经网络,这样我们就能保证 n n 次操作后,随机正确位置最大。这样所有位置都被填满了,最后对不正确的位置,我们只需要先执行一次操作二,再找到一个神经网络,其对应位置存在正确字符串,因为只会空白位置随机,而当前空白位置只有一个,显然这是一个必然事件。
上面操作一定是最优的吗?一定的。假设你选择某个神经网络的命中率是 ,你把其他所有的神经网络全部组合起来,命中率形如 x+ay+b x + a y + b ,其不可能更大。
对于不存在的情况,显然所有对应位置都没有目标串,就无法做到。时间复杂度为 O(mnmax(|bi,j|)) O ( m n max ( | b i , j | ) ) 。
参考代码(C++)
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; const int maxn = 505; string p[maxn], str[maxn][maxn]; int cntr[maxn], cntc[maxn]; int n, m; void solve() { cin >> n >> m; for (int i = 0; i < n; ++i) { cin >> p[i]; cntc[i] = 0; } for (int i = 0; i < m; ++i) { cntr[i] = 0; for (int j = 0; j < n; ++j) { cin >> str[i][j]; if (str[i][j] == p[j]) { ++cntc[j]; ++cntr[i]; } } } for (int i = 0; i < n; ++i) if (cntc[i] == 0) { cout << "-1\n"; return; } int maxc = 0; for (int i = 0; i < m; ++i) maxc = max(maxc, cntr[i]); cout << (n + ((n - maxc) << 1)) << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; cin >> t; while (t--) solve(); return 0; }
Problem G. Shorten the Array
题目大意
长度为 m m 的数组 的美感定义为所有可能数对 1≤i≤j≤m 1 ≤ i ≤ j ≤ m 中的 max(bi⊕bj) max ( b i ⊕ b j ) ,其中 x⊕y x ⊕ y 是数字 x x 和 的 bitwise XOR。我们将数组 b b 的美感表示为 。
如果数组 b b 中有 ,那么这个数组 b b 就叫做美丽数组。
最近,科斯佳从商店买了一个长度为 的数组 a a 。他认为这个数组太长了,所以打算从中剪切出一些美丽的子数组。也就是说,他想选择数字 和 r r ( ),这样数组 al…r a l … r 就很美丽了。这样一个子数组的长度为 r−l+1 r − l + 1 。整个数组 a a 也被视为一个子数组(包含 和 r=n r = n )。
你的任务是找出数组 a a 中最短的美丽子数组的长度。如果没有一个子数组是美丽的,那么你应该输出数字 。
题解思路:双指针+字典树Trie
首先,对于每个 l l ,如果找到第一个满足条件的 ,那么显然 r+1(r<n) r + 1 ( r < n ) 也可以。既然这样,那么我们维护一个双指针,对于每个左指针,不断扩展右指针,直到找到第一个满足条件的位置,更新答案即可。那么怎么快速计算出当前区间是否可以满足条件呢?很容易就会想到字典树求当前区间可以得到的最大异或值。时间复杂度为 O(n) O ( n ) (计算次数实际为 30n 30 n ,常数忽略,但实际运行时间还是要考虑的)。
参考代码(C++)
原创作者: Silenceneo-xw 转载于: https://www.cnblogs.com/Silenceneo-xw/p/18817323#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; const int maxn = 200'005; const int maxnode = 6'000'005; const int sigma_size = 2; struct trie { int child[maxnode][sigma_size]; int value[maxnode]; int size; void init() { size = 1; memset(child[0], 0, sizeof(child[0])); } void insert(int x, int y) { int pos = 0; for (int i = 29; i >= 0; --i) { int id = (x >> i) & 1; if (!child[pos][id]) { memset(child[size], 0, sizeof(child[size])); value[size] = 0; child[pos][id] = size++; } pos = child[pos][id]; value[pos] += y; } } int query(int x) { // cout << "query: " << x << '\n'; int pos = 0, ans = 0; for (int i = 29; i >= 0; --i) { int id = (x >> i) & 1; int idx = id ^ 1; int p = child[pos][idx]; if (p && value[p]) { ans |= 1 << i; pos = p; } else { p = child[pos][id]; if (p && value[p]) pos = p; else return -1; } } // cout << "query: ans = " << ans << '\n'; return ans; } } tr; int a[maxn]; int n, m; void solve() { cin >> n >> m; for (int i = 0; i < n; ++i) cin >> a[i]; if (m == 0) { cout << "1\n"; return; } tr.init(); int l = 0, r = 0, ans = n + 1; while (r < n) { // cout << l << ", " << r << endl; while (r < n && tr.query(a[r]) < m) tr.insert(a[r++], 1); if (r < n) ans = min(ans, r - l + 1); tr.insert(a[l++], -1); if (l > r) r = l; } cout << (ans == n + 1 ? -1 : ans) << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int t = 1; cin >> t; while (t--) solve(); return 0; }
-