Party
图片来自中山大学程序设计竞赛题解
解题思路:每一个点维护一个能到达最右端的点,然后维护一个当前区间的最小能够到达右端的点。
如果当前区间最小值大于查询区间的右端点直接返回0,说明当前区间里面的人两两认识。
否则的话暴力找到叶子节点更新叶子节点的值。
感想:这种解法就是优化的暴力。
对于这种数据比较难处理
1 2
1 3
1 4
1 5
1 6
..............
这样的话就是每次更新整个查询区间。。。。。
测试了一下:对于5e5的随机数据3秒可以跑完。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<bitset>
#include<map>
#include<vector>
using namespace std;
#define LL long long
#define N 500005
#define maxn 10005
#define inf 0x3f3f3f3f
#define sca(x) scanf("%d",&x)
#define pb(x) push_back(x)
const LL mod =1e9+7;
struct node
{
int ma,v;
}t[N*4];
void build(int rt,int l,int r)
{
if(l==r)
{
t[rt].ma=t[rt].v=l;
return ;
}
int m=(l+r)>>1;
build(rt<<1,l,m);
build(rt<<1|1,m+1,r);
t[rt].ma=min(t[rt<<1].ma,t[rt<<1|1].ma);
}
LL query(int rt,int l,int r,int ql,int qr,int p)
{
LL ans=0;
if(t[rt].ma>=p)return 0;
if(l==r)
{
LL tmp=p-t[rt].ma;
t[rt].ma=t[rt].v=p;
return tmp;
}
int m=(l+r)>>1;
if(ql<=m) ans+=query(rt<<1,l,m,ql,min(qr,m),p);
if(qr>m) ans+=query(rt<<1|1,m+1,r,max(m+1,ql),qr,p);
t[rt].ma=min(t[rt<<1].ma,t[rt<<1|1].ma);
return ans;
}
int main()
{
int n,m;
while(cin>>n>>m)
{
build(1,1,n);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%lld\n",query(1,1,n,x,y,y));
}
}
}