Problem Description
有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?
Input
n: 表示有n对夫妻被邀请 (n<= 1000)
m: 表示有m 对矛盾关系 ( m < (n - 1) * (n -1))在接下来的m行中,每行会有4个数字,分别是 A1,A2,C1,C2
A1,A2分别表示是夫妻的编号
C1,C2 表示是妻子还是丈夫 ,0表示妻子 ,1是丈夫
夫妻编号从 0 到 n -1Output
如果存在一种情况 则输出YES
否则输出 NOSample Input
2
1
0 1 1 1Sample Output
YES
思路:每对夫妻代表图中一个结点,只有 1、0 两种选择,对于有矛盾的夫妻对,使其不列席,让无矛盾夫妻对的列席即可
对于 m 矛盾关系,设 a、b 两对夫妇存在矛盾:
- 若第 a 对的妻子与第 b 对的妻子有矛盾(a b 0 0)
则 a 的妻子去了 b 的丈夫必须去,b 的妻子去了 a 的丈夫必须去:<a,0,b,1>、<b,0,a,1>,添边:<a+n,b>,<b+n,a> - 若第 a 对的妻子与第 b 对的丈夫有矛盾(a b 0 1)
则 a 的妻子去了 b 的妻子必须去,b 的丈夫去了 a 的丈夫必须去:<a,0,b,0>、<b,1,a,1>,添边:<a+n,b+n>,<b,a> - 若第 a 对的丈夫与第 b 对的妻子有矛盾(a b 1 0)
则 a 的丈夫去了 b 的丈夫必须去,b 的妻子去了 a 的妻子必须去:<a,1,b,1>、<b,0,a,0,>,添边:<a,b>,<b+n,a+n> - 若第 a 对的丈夫与第 b 对的丈夫有矛盾(a b 1 1)
则 a 的丈夫去了 b 的妻子必须去,b 的丈夫去了 a 的妻子必须去:<a,1,b,0>、<b,1,a,0>,添边:<a,b+n>,<b,a+n>
Source Program
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define Exp 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
const int MOD = 1E9+7;
const int N = 1000000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;
struct Edge{
int to,next;
}edge[N*2];
int head[N],tot;
int n,m;
int dfn[N],low[N];
bool vis[N];//标记数组
int scc[N];//记录结点i属于哪个强连通分量
int block_cnt;//时间戳
int sig;//记录强连通分量个数
stack<int> S;
void init(){
tot=0;
sig=0;
block_cnt=0;
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(scc,0,sizeof(scc));
}
void addEdge(int from,int to){
edge[++tot].to=to;
edge[tot].next=head[from];
head[from]=tot;
}
void Tarjan(int x) {
vis[x]=true;
dfn[x]=low[x]=++block_cnt;//每找到一个新点,纪录当前节点的时间戳
S.push(x);//当前结点入栈
for(int i=head[x]; i!=-1; i=edge[i].next) { //遍历整个栈
int y=edge[i].to;//当前结点的下一结点
if(!dfn[y]) {
Tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(vis[y])
low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x]) { //满足强连通分量要求
sig++;//记录强连通分量个数
while(true) { //记录元素属于第几个强连通分量
int temp=S.top();
S.pop();
vis[temp]=false;
scc[temp]=sig;
if(temp==x)
break;
}
}
}
bool twoSAT(){
for(int i=1;i<=2*n;i++)//找强连通分量
if(!dfn[i])
Tarjan(i);
for(int i=1;i<=n;i++)
if(scc[i]==scc[i+n])//条件a与!a属于同一连通分量,无解
return false;
return true;
}
int main() {
while( scanf("%d%d",&n,&m)!=EOF&&(n+m)){
init();
while(m--) {
int x,y,xVal,yVal;
scanf("%d%d%d%d",&x,&y,&xVal,&yVal);
x++;
y++;
if(xVal==0&&yVal==0){//x为0或y为0
addEdge(x+n,y);//x为0,y为1
addEdge(y+n,x);//y为0,x为1
}
else if(xVal==0&&yVal==1){//x为0或y为1
addEdge(x+n,y+n);//x为0,y为0
addEdge(y,x);//y为1,x为1
}
else if(xVal==1&&yVal==0){//x为1或y为0
addEdge(x,y);//x为1,y为1
addEdge(y+n,x+n);//y为0,x为0
}
else if(xVal==1&&yVal==1){//x为1或y为1
addEdge(x,y+n);//x为1,y为0
addEdge(y,x+n);//y为1,x为0
}
}
bool flag=twoSAT();
if(!flag)
printf("NO\n");
else
printf("YES\n");
}
return 0;
}