Party(HDU-3062)

Problem Description

有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?

Input

n: 表示有n对夫妻被邀请 (n<= 1000)
m: 表示有m 对矛盾关系 ( m < (n - 1) * (n -1))

在接下来的m行中,每行会有4个数字,分别是 A1,A2,C1,C2 
A1,A2分别表示是夫妻的编号 
C1,C2 表示是妻子还是丈夫 ,0表示妻子 ,1是丈夫
夫妻编号从 0 到 n -1 

Output

如果存在一种情况 则输出YES 
否则输出 NO 

Sample Input


1
0 1 1 1 

Sample Output

YES

思路:每对夫妻代表图中一个结点,只有 1、0 两种选择,对于有矛盾的夫妻对,使其不列席,让无矛盾夫妻对的列席即可

对于 m 矛盾关系,设 a、b 两对夫妇存在矛盾:

  • 若第 a 对的妻子与第 b 对的妻子有矛盾(a b 0 0)
    则 a 的妻子去了 b 的丈夫必须去,b 的妻子去了 a 的丈夫必须去:<a,0,b,1>、<b,0,a,1>,添边:<a+n,b>,<b+n,a>
  • 若第 a 对的妻子与第 b 对的丈夫有矛盾(a b 0 1)
    则 a 的妻子去了 b 的妻子必须去,b 的丈夫去了 a 的丈夫必须去:<a,0,b,0>、<b,1,a,1>,添边:<a+n,b+n>,<b,a>
  • 若第 a 对的丈夫与第 b 对的妻子有矛盾(a b 1 0)
    则 a 的丈夫去了 b 的丈夫必须去,b 的妻子去了 a 的妻子必须去:<a,1,b,1>、<b,0,a,0,>,添边:<a,b>,<b+n,a+n>
  • 若第 a 对的丈夫与第 b 对的丈夫有矛盾(a b 1 1)
    则 a 的丈夫去了 b 的妻子必须去,b 的丈夫去了 a 的妻子必须去:<a,1,b,0>、<b,1,a,0>,添边:<a,b+n>,<b,a+n>

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define Exp 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
const int MOD = 1E9+7;
const int N = 1000000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;

struct Edge{
    int to,next;
}edge[N*2];
int head[N],tot;
int n,m;
int dfn[N],low[N];
bool vis[N];//标记数组
int scc[N];//记录结点i属于哪个强连通分量
int block_cnt;//时间戳
int sig;//记录强连通分量个数
stack<int> S;
void init(){
    tot=0;
    sig=0;
    block_cnt=0;
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(scc,0,sizeof(scc));
}
void addEdge(int from,int to){
    edge[++tot].to=to;
    edge[tot].next=head[from];
    head[from]=tot;
}
void Tarjan(int x) {
    vis[x]=true;
    dfn[x]=low[x]=++block_cnt;//每找到一个新点,纪录当前节点的时间戳
    S.push(x);//当前结点入栈

    for(int i=head[x]; i!=-1; i=edge[i].next) { //遍历整个栈
        int y=edge[i].to;//当前结点的下一结点
        if(!dfn[y]) {
            Tarjan(y);
            low[x]=min(low[x],low[y]);
        }
        else if(vis[y])
            low[x]=min(low[x],dfn[y]);
    }

    if(dfn[x]==low[x]) { //满足强连通分量要求
        sig++;//记录强连通分量个数

        while(true) { //记录元素属于第几个强连通分量
            int temp=S.top();
            S.pop();
            vis[temp]=false;
            scc[temp]=sig;
            if(temp==x)
                break;
        }
    }
}
bool twoSAT(){
    for(int i=1;i<=2*n;i++)//找强连通分量
        if(!dfn[i])
            Tarjan(i);
    for(int i=1;i<=n;i++)
        if(scc[i]==scc[i+n])//条件a与!a属于同一连通分量,无解
            return false;
    return true;
}
int main() {
    while( scanf("%d%d",&n,&m)!=EOF&&(n+m)){
        init();
        while(m--) {
            int x,y,xVal,yVal;
            scanf("%d%d%d%d",&x,&y,&xVal,&yVal);
            x++;
            y++;
            if(xVal==0&&yVal==0){//x为0或y为0
                addEdge(x+n,y);//x为0,y为1
                addEdge(y+n,x);//y为0,x为1
            }
            else if(xVal==0&&yVal==1){//x为0或y为1
                addEdge(x+n,y+n);//x为0,y为0
                addEdge(y,x);//y为1,x为1
            }
            else if(xVal==1&&yVal==0){//x为1或y为0
                addEdge(x,y);//x为1,y为1
                addEdge(y+n,x+n);//y为0,x为0
            }
            else if(xVal==1&&yVal==1){//x为1或y为1
                addEdge(x,y+n);//x为1,y为0
                addEdge(y,x+n);//y为1,x为0
            }
        }

        bool flag=twoSAT();
        if(!flag)
            printf("NO\n");
        else
            printf("YES\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值