完全背包问题

问题:

有N种物品和一个容量为V的背包,每种物品都有无限件。
第i种物品的费用是w[i], 价值是c[i]。求解将哪些物品装入背包可使这些物品的总容量不超过背包容量,且总价值最大(优)

基本思路

该问题类似于01背包问题,所不同的是每种物品有无限件。
策略:取0件、取1件、… 取无限n

使用一维数组的伪代码:

for i = 1 .. N
 for v = 0 .. V
   f[v] = max{f[v],f[v-w[i]]+c[i]};

以上算法要求必须采用 v = 0 … V的正序顺序循环,这与01背包要求逆序不同。
为什么?每种物品可选无限件,所以在考虑“加选一件第i种物品”策略时,正需要一个可能已选入第i种物品的子结果f[i][v-w[i]]。所以必须采用正序。

二维数组动态转移方程:
dp[i][v] = max{dp[i][v-w[i]] + c[i] , dp[i-1][v]}

题目描述

有n种物品,每种物品有一个重量和一个价值。但每种物品的数量是无限的,同时有一背包,最大载重量为m,今从n种物品中选取若干件(同一物品可以多次选取),使得重量(容量)的和小于等于m,而价值的和为最大。

输入格式

  1. 第 1 行:两个整数,M(背包容量,M<=200)和N(物品数量,N <=30);
  2. 第 2 到 N+1行: 每行两个整数 Wi,Ci,表示每个物品的重量和价值。

输出格式

  • 仅一行,一个数,表示最大总价值。

输入样例

10 4
2 1
3 3
4 5
7 8

输出样例

11

完全背包问题解法一

#include<bits/stdc++.h>

using namespace std;
/*完全背包问题(每种物品可选无限件) 
  设 dp[i][v]表示前i件物品,总容量不超过v的最优价值,则
  dp[i][v]=max(dp[i-1][v],dp[i][v-w[i]]+c[i]) 
  说明:完全背包必须采用v = 0...M的正序顺序循环。
        dp[i-1][v]: 当前物品i一个也不装 ,则总价值采用前i-1件物品,总容量不超v的最优价值。
		dp[i][v-w[i]]+c[i]:加选一件当前物品i时, 正需要累加一个可能已选入第i件物品的子
		                    结果dp[i][v-w[i]] 
  dp[N][M]即是最优解 
*/
const int maxm=201, maxn =31;//maxm为容量 
int m,n; 

int w[maxn],c[maxn];
int dp[maxn][maxm];
int main()
{
	scanf("%d%d ",&m, &n);//背包容量m和物品数量n
	for(int i=1; i<=n;i++)
	  scanf("%d%d",&w[i],&c[i]);
	//dp[i][v]表示前i件物品,总重量不超过v的最优价值
	for(int i=1;i <= n; i++)
	for(int v=1;v <= m; v++) 
	  if(v< w[i]) dp[i][v]=dp[i-1][v];
	  else
	    if(dp[i-1][v] > dp[i][v-w[i]]+c[i]) dp[i][v]=dp[i-1][v];
	    else dp[i][v] = dp[i][v-w[i]] + c[i];	
	
	printf(" max = %d",dp[n][m]);//最优解 
	
	return 0;
}

完全背包空间O(V)解法二

//完全背包-一维数组解法
/*
dp(v)表示容量不超过v公斤的最大价值,则
dp(v)= max{dp(v),dp(v-w[i])+c[i]} (v>=w[i], 1<=i<=n) 

*/ 
#include<bits/stdc++.h>

using namespace std;
const int maxm =2001 , maxn =31;
int n,m,v,i;
int c[maxn],w[maxn];
int dp[maxm];//滚动数组压缩二维数组,转换成一维,减少空间成本
int main()
{
	cin >> m >> n;//背包容量m ,物品数量(种类)n ,每种有无限个
	
	for(i=1;i <= n; i++)
	 cin>> w[i] >> c[i];
	
	for(i =1 ; i <= n; i++)
	 for(v=w[i];v<=m;v++ )//设dp[v]表示重量不超过v公斤的最大价值
	  dp[v]=max(dp[v],dp[v-w[i]]+c[i]); //与当前dp[v]内记忆的最优价值比较,谁优取谁 
	
	
	printf("max = %d\n",dp[m]);//f[m]为最优解 
	return 0;
	
 } 


可能的优化

  1. 完全背包有一个简单有效的优化: 若两种物品i,j 满足 w[i] <= w[j] 同时 c[i] >= c[j] ,则将物品j去掉,不用考虑之。 正确性证明: 任何情况下都可将价值小,容量大的j换成性价比高的i,得到的方案至少不会更差。缺点:不能改善最坏情况的复杂度。

  2. 转化为01背包问题求解:
    考虑第i种物品最多选 V/w[i]件,于是可以把第i种物品转化为 V/w[i]件重量及价值均不变的物品,然后求解这个01背包问题。
    原理: 将一种物品拆成多件物品。

  3. 考虑把每种物品拆成O(log(V/w[i])+ 1)件物品。
    运用二进制思想,例如: 7(0111) == 2^0 + 2 ^ 1 + 2 ^ 2
    k 来自集合{0,1,2}
    对应拆分集合{ 1,2,4}
    不管最优策略选几件第i种物品,总可以表示成若干个 2^k件物品的和。
    高效拆分法: 把第i种物品拆成费用为 w[i] * 2^k , 价值为 c[i] * 2^k 的若干件物品,其中k满足w[i] * 2^k < V 。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
问题描述: 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品重量分别是W1 , W2 , … , Wn,物品价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品的总重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品的选择方案。假设前面已有了多选择的方案,并保留了其中总价值最大的方案于数组option[]中,该方案的总价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品重量之和为tw;因此,若其余物品都选择是可能的话,本方案所能达到的总价值的期望值设为tv。引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品的选择有两可能: ① 物品i被选择。这可能性仅当包含它不会超过方案总重量的限制才是可行的。选中之后继续递归去考虑其余物品的选择; ② 物品i不被选择。这可能性仅当不包含物品i也有可能找到价值更大的方案的情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值