这9本书,带你了解 ChatGPT 的底层逻辑(文末赠书)

自2022年11月30日发布以来,ChatGPT已经真正意义上地火爆全球:它在不到40天内就拥有了1000万用户,而Instagram足足用了355天;最近它的日活已经达到1000万,这意味着其用户已经超过2000万。

42f1033006b5d0b530c99faaf397b2cc.jpeg

▲ ChatGPT日活数据统计,图源:ARK风险投资公司

ChatGPT的强大想必很多朋友已经见识或体验过:它不仅能流畅地和我们对话,还能写诗、写文章,甚至写代码。

正是因为如此,国外许多高校和教育系统已经禁止学生使用ChatGPT,因为太多学生用它来写作业和考试作弊。

很多读者已经迫不及待想要去了解ChatGPT,但却苦于无从下手。

今天,小悠为大家整理了一份书单,方便大家去了解ChatGPT的底层逻辑。

01

科普

ChatGPT到底是什么?人工智能是否会征服人类?Moss开始布局了?人工智能的发展走向是什么?ChatGPT爆火的底层逻辑?

39b80ec6206571109dae547876704539.jpeg

人工智能简史 第2版

作者:[美] 尼克

推荐语

详解人工智能起源、神经网络、深度学习、自然语言处理、遗传算法,获中华优秀出版物图书奖、吴文俊人工智能科技进步奖,入围央视“2017年度中国好书”,获“文津图书奖”推荐图书。

02

技术入门

跟上人工智能,不被社会淘汰!了解人工智能,玩转ChatGPT!

8aa8212fe6e070d44fcaa2f2795a7fad.jpeg

图解人工智能

作者:[日]多田智史

推荐语

本书以图解的方式网罗了人工智能开发常备的基础知识,内容涉及机器学习、深度学习、强化学习、图像和语音的模式识别、自然语言处理、分布式计算等热门技术。

全书以图配文,深入浅出,是一本兼顾理论和技术的人工智能入门教材。旨在帮助读者建立对人工智能技术的整体印象,为今后深入探索该领域打下基础。

f8e8dbfcec04cd5a5109775dd834c00b.jpeg

深度学习入门:基于Python的理论与实现

作者:斋藤康毅

推荐语

日本深度学习入门经典畅销书,原版上市不足2年印刷已达100 000册。对于非AI方向的技术人员,本书将大大降低入门深度学习的门槛;对于在校大学生、研究生,本书不失为学习深度学习的一本好教材;即便是在工作中已经熟练使用框架开发各类深度学习模型的读者,也可以从本书中获得新的体会。

2389facfff8acd9d58a4788ba56ef3cd.jpeg

用Python动手学机器学习

作者:[日]伊藤真

推荐语

本书是面向机器学习新手的入门书,从学习环境的搭建开始,图文并茂地介绍了学习机器学习所需的Python知识和数学知识,并在此基础上结合数学式、示例程序、插图等,抽丝剥茧般地对有监督学习中的回归与分类、神经网络与深度学习的算法与应用、手写数字识别、无监督学习的算法等进行了介绍。本书既有图形、代码,又有详细的数学式推导过程,大大降低了机器学习的学习门槛,即使没有学过Python、数学基础不太好,也可以看懂。

98c1334ec3c992e267a9443e66e5a44e.jpeg

自然语言处理入门

作者:何晗

推荐语

本书学习路径清晰,图文并茂,算法、公式、代码相互印证,Java 与 Python 双实现。作者何晗(@hankcs)兼具一线实战经验与硬核学术背景 自然语言处理开源项目 HanLP 作者,埃默里大学计算机博士生,研究方向是句法分析、语义分析与问答系统

上市后得到了业内专家一致好评:工业界周明、李航、刘群、王斌、杨攀,学术界宗成庆、刘知远、张华平。

随书附赠大尺寸思维导图,提供源码下载、 GitHub 答疑,为教师提供教学讲义 PPT。

03

技术进阶

技术人如何追赶ChatGPT的浪潮?如何花样玩转ChatGPT?人工智能的进阶之路!

1af95cfaaf09bea0be42e441f0add53a.jpeg

Python深度学习(第2版)

作者:[美] 弗朗索瓦·肖莱(François Chollet)

推荐语

本书由流行深度学习框架Keras之父弗朗索瓦·肖莱执笔,通过直观的解释和丰富的示例帮助你构建深度学习知识体系。作者避免使用数学符号,转而采用Python代码来解释深度学习的核心思想。

全书共计14章,既涵盖了深度学习的基本原理,又体现了这一迅猛发展的领域在近几年里取得的重要进展,包括Transformer架构的原理和示例。

读完本书后,你将能够使用Keras解决从计算机视觉到自然语言处理等现实世界的诸多问题,包括图像分类、图像分割、时间序列预测、文本分类、机器翻译、文本生成等。

dca7f790243f76ee7e32cb7870649a57.jpeg

机器学习 公式推导与代码实现

作者:鲁伟

推荐语

作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。

本书在对全部机器学习算法进行分类梳理的基础上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习的学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。

2d4bfaea9b83ed59daededdc65fbda99.png

深度强化学习

作者:王树森 黎彧君 张志华

推荐语

本书基于备受读者推崇的王树森“深度强化学习”系列公开视频课,专门解决“入门深度强化学习难”的问题。 

本书的独特之处在于:第一,知识精简,剔除一切不必要的概念和公式,学起来轻松;第二,内容新颖,聚焦近10年深度强化学习领域的突破,让你一上手就紧跟最新技术。本书系统讲解深度强化学习的原理与实现,但不回避数学公式和各种模型,原创100多幅精美插图,并以全彩印刷展示。简洁清晰的语言+生动形象的图示,助你扫除任何可能的学习障碍!

本书内容分为五部分:基础知识、价值学习、策略学习、多智能体强化学习、应用与展望,涉及DQN、A3C、TRPO、DDPG、AlphaGo等。

2b7a112c73f3c8af038215ad4e51e1e8.jpeg

BERT基础教程:Transformer大模型实战

[印] 苏达哈尔桑·拉维昌迪兰(Sudharsan Ravichandiran)

推荐语

本书聚焦谷歌公司开发的BERT自然语言处理模型,由浅入深地介绍了BERT的工作原理、BERT的各种变体及其应用。

书中用简单的文字清晰阐释BERT背后的复杂原理,让你轻松上手NLP领域的里程碑式模型。本书内含200+张示意图,示例涵盖文本分类、文本摘要、问答等常见任务。

本书即将上市 敬请期待

今天为了感谢读者们的长期关注和支持,我们将提供4个名额 ,赠送以上9本书中的任意一本,根据你的需要,想要的读者请在评论区留言,并邀请你的朋友为你点赞,其中点赞排名前4的读者,获得你想要的任意一本书!

活动截止时间:2月13号   12:00整

END

87da077178c8d42fa60bdad3fb0f31f5.png

分享

收藏

点赞

在看

77c8ecfce0916a035969d2a36cee7fdd.gif

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值