业界通用推荐系统框架结构如下:
Match & Rank
定义:Match基于当前user(profile、history)和context,快速在全库里找到TopN最相关的item,给Rank来做小范围综合多目标最大化
通常做法:用各种算法做召回,比如user/item/model-based CF,Content-based,Demographic-based,DNN-Embedding-based等,做粗排之后交由后面的Rank层做更精细的排序。
1、Match算法典型应用
(1) 猜你喜欢
多样推荐
(2) 相似推荐
看了还看
(3)搭配推荐
买了还买
Outline
2、Collaborative Filtering
“CF makes predictions (filtering) about a user’s interest by collecting preferences information from many users (collaborating)” —Wikipedia
(1)数学形式化:矩阵补全问题
(2)基于共现关系的 Collaborative Filtering 算法
•User-based CF •
多⽤于挖掘那些有共同兴趣的⼩团体,通常新颖性较好,但是准确性稍差
•Item-based CF •
侧重于挖掘item之间的关系,然后根据⽤户的历史⾏为来为⽤户⽣成推荐列表,相⽐user-based⽅法,item-based 的应⽤更为⼴泛。
实际计算中会有很多位置都为0,可以使用倒排表的形式
基于Item-based的算法调用示意图