推荐系统二---召回算法和业界最佳实践(一)

本文探讨了推荐系统中Match & Rank的框架,包括Match算法的应用,如猜你喜欢、相似推荐和搭配推荐。重点介绍了协同过滤(User-based和Item-based)及其优化实践,如热门用户降权、实时I2I和Hybrid I2I。此外,还讨论了SVD在模型中的不足以及Factorization Machines的优势。最后,文章指出Rating Prediction的局限性和转向Top-N推荐的重要性。
摘要由CSDN通过智能技术生成

业界通用推荐系统框架结构如下:
在这里插入图片描述
Match & Rank
定义:Match基于当前user(profile、history)和context,快速在全库里找到TopN最相关的item,给Rank来做小范围综合多目标最大化
通常做法:用各种算法做召回,比如user/item/model-based CF,Content-based,Demographic-based,DNN-Embedding-based等,做粗排之后交由后面的Rank层做更精细的排序。

1、Match算法典型应用

(1) 猜你喜欢
多样推荐
(2) 相似推荐
看了还看
(3)搭配推荐
买了还买
在这里插入图片描述

Outline

2、Collaborative Filtering

“CF makes predictions (filtering) about a user’s interest by collecting preferences information from many users (collaborating)” —Wikipedia

(1)数学形式化:矩阵补全问题
在这里插入图片描述

(2)基于共现关系的 Collaborative Filtering 算法
•User-based CF •
多⽤于挖掘那些有共同兴趣的⼩团体,通常新颖性较好,但是准确性稍差
•Item-based CF •
侧重于挖掘item之间的关系,然后根据⽤户的历史⾏为来为⽤户⽣成推荐列表,相⽐user-based⽅法,item-based 的应⽤更为⼴泛。

在这里插入图片描述

实际计算中会有很多位置都为0,可以使用倒排表的形式
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基于Item-based的算法调用示意图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值