推荐系统 - 基于用户的协同召回算法

 

说明

       基于用户对物品交互的相似度进行top N推荐。

代码

       分为协同函数和主函数两个部分,数据集来源这里。链接:https://pan.baidu.com/s/1sQsHUgL__kwWAghe7TvMZA 提取码:18bz 
 

# coding: utf-8 -*-
import math
import pandas as pd


class UserCf:
    '''

       这个 协同的方法还是比较  靠谱的,主要依靠 用户的协同,和上一个基于商品的协同可以做搭配。  这里主要找类似的人的看的情况做推荐使用。
    '''
    def __init__(self):
        self.file_path = '../data/ratings.csv'
        self._init_frame()

    def _init_frame(self):
        self.frame = pd.read_csv(self.file_path)

    @staticmethod
    def _cosine_sim(target_movies, movies):
        '''
        simple method for calculate cosine distance.   计算两个用户的 看过电影组合的 相似度情况。  共现情况等
        e.g: x = [1 0 1 1 0], y = [0 1 1 0 1]
             cosine = (x1*y1+x2*y2+...) / [sqrt(x1^2+x2^2+...)+sqrt(y1^2+y2^2+...)]
            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值