chapter_linear-networks:线性回归

线性回归

🏷sec_linear_regression

参考动手学深度学习教材对应章节:https://zh-v2.d2l.ai/
根据课程相关章节的Jupyter文件进行运行得到结果并导出。

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。
在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

在机器学习领域中的大多数任务通常都与预测(prediction)有关。
当我们想预测一个数值时,就会涉及到回归问题。
常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、
预测需求(零售销量等)。
但不是所有的预测都是回归问题。
在后面的章节中,我们将介绍分类问题。分类问题的目标是预测数据属于一组类别中的哪一个。

线性回归的基本元素

线性回归(linear regression)可以追溯到19世纪初,
它在回归的各种标准工具中最简单而且最流行。
线性回归基于几个简单的假设:
首先,假设自变量 x \mathbf{x} x和因变量 y y y之间的关系是线性的,
y y y可以表示为 x \mathbf{x} x中元素的加权和,这里通常允许包含观测值的一些噪声;
其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

为了解释线性回归,我们举一个实际的例子:
我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。
为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。
这个数据集包括了房屋的销售价格、面积和房龄。
在机器学习的术语中,该数据集称为训练数据集(training data set)
训练集(training set)。
每行数据(比如一次房屋交易相对应的数据)称为样本(sample),
也可以称为数据点(data point)或数据样本(data instance)。
我们把试图预测的目标(比如预测房屋价格)称为标签(label)或目标(target)。
预测所依据的自变量(面积和房龄)称为特征(feature)或协变量(covariate)。

通常,我们使用 n n n来表示数据集中的样本数。
对索引为 i i i的样本,其输入表示为 x ( i ) = [ x 1 ( i ) , x 2 ( i ) ] ⊤ \mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)}]^\top x(i)=[x1(i),x2(i)]
其对应的标签是 y ( i ) y^{(i)} y(i)

线性模型

🏷subsec_linear_model

线性假设是指目标(房屋价格)可以表示为特征(面积和房龄)的加权和,如下面的式子:

p r i c e = w a r e a ⋅ a r e a + w a g e ⋅ a g e + b . \mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathrm{age}} \cdot \mathrm{age} + b. price=wareaarea+wageage+b.
:eqlabel:eq_price-area

:eqref:eq_price-area中的 w a r e a w_{\mathrm{area}} warea w a g e w_{\mathrm{age}} wage
称为权重(weight),权重决定了每个特征对我们预测值的影响。
b b b称为偏置(bias)、偏移量(offset)或截距(intercept)。
偏置是指当所有特征都取值为0时,预测值应该为多少。
即使现实中不会有任何房子的面积是0或房龄正好是0年,我们仍然需要偏置项。
如果没有偏置项,我们模型的表达能力将受到限制。
严格来说, :eqref:eq_price-area是输入特征的一个
仿射变换(affine transformation)。
仿射变换的特点是通过加权和对特征进行线性变换(linear transformation),
并通过偏置项来进行平移(translation)。

给定一个数据集,我们的目标是寻找模型的权重 w \mathbf{w} w和偏置 b b b
使得根据模型做出的预测大体符合数据里的真实价格。
输出的预测值由输入特征通过线性模型的仿射变换决定,仿射变换由所选权重和偏置确定。

而在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。
当我们的输入包含 d d d个特征时,我们将预测结果 y ^ \hat{y} y^
(通常使用“尖角”符号表示 y y y的估计值)表示为:

y ^ = w 1 x 1 + . . . + w d x d + b . \hat{y} = w_1 x_1 + ... + w_d x_d + b. y^=w1x1+...+wdxd+b.

将所有特征放到向量 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd中,
并将所有权重放到向量 w ∈ R d \mathbf{w} \in \mathbb{R}^d wRd中,
我们可以用点积形式来简洁地表达模型:

y ^ = w ⊤ x + b . \hat{y} = \mathbf{w}^\top \mathbf{x} + b. y^=wx+b.
:eqlabel:eq_linreg-y

在 :eqref:eq_linreg-y中,
向量 x \mathbf{x} x对应于单个数据样本的特征。
用符号表示的矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d
可以很方便地引用我们整个数据集的 n n n个样本。
其中, X \mathbf{X} X的每一行是一个样本,每一列是一种特征。

对于特征集合 X \mathbf{X} X,预测值 y ^ ∈ R n \hat{\mathbf{y}} \in \mathbb{R}^n y^Rn
可以通过矩阵-向量乘法表示为:

y ^ = X w + b {\hat{\mathbf{y}}} = \mathbf{X} \mathbf{w} + b y^=Xw+b

这个过程中的求和将使用广播机制
(广播机制在 :numref:subsec_broadcasting中有详细介绍)。
给定训练数据特征 X \mathbf{X} X和对应的已知标签 y \mathbf{y} y
线性回归的目标是找到一组权重向量 w \mathbf{w} w和偏置 b b b
当给定从 X \mathbf{X} X的同分布中取样的新样本特征时,
这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。

虽然我们相信给定 x \mathbf{x} x预测 y y y的最佳模型会是线性的,
但我们很难找到一个有 n n n个样本的真实数据集,其中对于所有的 1 ≤ i ≤ n 1 \leq i \leq n 1in y ( i ) y^{(i)} y(i)完全等于 w ⊤ x ( i ) + b \mathbf{w}^\top \mathbf{x}^{(i)}+b wx(i)+b
无论我们使用什么手段来观察特征 X \mathbf{X} X和标签 y \mathbf{y} y
都可能会出现少量的观测误差。
因此,即使确信特征与标签的潜在关系是线性的,
我们也会加入一个噪声项来考虑观测误差带来的影响。

在开始寻找最好的模型参数(model parameters) w \mathbf{w} w b b b之前,
我们还需要两个东西:
(1)一种模型质量的度量方式;
(2)一种能够更新模型以提高模型预测质量的方法。

损失函数

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。
损失函数(loss function)能够量化目标的实际值与预测值之间的差距。
通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。
回归问题中最常用的损失函数是平方误差函数。
当样本 i i i的预测值为 y ^ ( i ) \hat{y}^{(i)} y^(i),其相应的真实标签为 y ( i ) y^{(i)} y(i)时,
平方误差可以定义为以下公式:

l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 . l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2. l(i)(w,b)=21(y^(i)y(i))2.
:eqlabel:eq_mse

常数 1 2 \frac{1}{2} 21不会带来本质的差别,但这样在形式上稍微简单一些
(因为当我们对损失函数求导后常数系数为1)。
由于训练数据集并不受我们控制,所以经验误差只是关于模型参数的函数。
为了进一步说明,来看下面的例子。
我们为一维情况下的回归问题绘制图像,如 :numref:fig_fit_linreg所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Z88jNw9n-1651631905614)(../img/fit-linreg.svg)]

🏷fig_fit_linreg

由于平方误差函数中的二次方项,
估计值 y ^ ( i ) \hat{y}^{(i)} y^(i)和观测值 y ( i ) y^{(i)} y(i)之间较大的差异将导致更大的损失。
为了度量模型在整个数据集上的质量,我们需计算在训练集 n n n个样本上的损失均值(也等价于求和)。

L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 . L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wx(i)+by(i))2.

在训练模型时,我们希望寻找一组参数( w ∗ , b ∗ \mathbf{w}^*, b^* w,b),
这组参数能最小化在所有训练样本上的总损失。如下式:

w ∗ , b ∗ = * ⁡ a r g m i n w , b   L ( w , b ) . \mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b}\ L(\mathbf{w}, b). w,b=*argminw,b L(w,b).

解析解

线性回归刚好是一个很简单的优化问题。
与我们将在本书中所讲到的其他大部分模型不同,线性回归的解可以用一个公式简单地表达出来,
这类解叫作解析解(analytical solution)。
首先,我们将偏置 b b b合并到参数 w \mathbf{w} w中,合并方法是在包含所有参数的矩阵中附加一列。
我们的预测问题是最小化 ∥ y − X w ∥ 2 \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 yXw2
这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。
将损失关于 w \mathbf{w} w的导数设为0,得到解析解:

w ∗ = ( X ⊤ X ) − 1 X ⊤ y . \mathbf{w}^* = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y}. w=(XX)1Xy.

像线性回归这样的简单问题存在解析解,但并不是所有的问题都存在解析解。
解析解可以进行很好的数学分析,但解析解对问题的限制很严格,导致它无法广泛应用在深度学习里。

随机梯度下降

即使在我们无法得到解析解的情况下,我们仍然可以有效地训练模型。
在许多任务上,那些难以优化的模型效果要更好。
因此,弄清楚如何训练这些难以优化的模型是非常重要的。

本书中我们用到一种名为梯度下降(gradient descent)的方法,
这种方法几乎可以优化所有深度学习模型。
它通过不断地在损失函数递减的方向上更新参数来降低误差。

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值)
关于模型参数的导数(在这里也可以称为梯度)。
但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。
因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,
这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B
它是由固定数量的训练样本组成的。
然后,我们计算小批量的平均损失关于模型参数的导数(也可以称为梯度)。
最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

我们用下面的数学公式来表示这一更新过程( ∂ \partial 表示偏导数):

( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) . (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). (w,b)(w,b)BηiB(w,b)l(i)(w,b).

总结一下,算法的步骤如下:
(1)初始化模型参数的值,如随机初始化;
(2)从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。
对于平方损失和仿射变换,我们可以明确地写成如下形式:

w ← w − η ∣ B ∣ ∑ i ∈ B ∂ w l ( i ) ( w , b ) = w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) ) , b ← b − η ∣ B ∣ ∑ i ∈ B ∂ b l ( i ) ( w , b ) = b − η ∣ B ∣ ∑ i ∈ B ( w ⊤ x ( i ) + b − y ( i ) ) . \begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right),\\ b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right). \end{aligned} wbwBηiBwl(i)(w,b)=wBηiBx(i)(wx(i)+by(i)),bBηiBbl(i)(w,b)=bBηiB(wx(i)+by(i)).
:eqlabel:eq_linreg_batch_update

公式 :eqref:eq_linreg_batch_update中的 w \mathbf{w} w x \mathbf{x} x都是向量。
在这里,更优雅的向量表示法比系数表示法(如 w 1 , w 2 , … , w d w_1, w_2, \ldots, w_d w1,w2,,wd)更具可读性。
∣ B ∣ |\mathcal{B}| B表示每个小批量中的样本数,这也称为批量大小(batch size)。
η \eta η表示学习率(learning rate)。
批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。
这些可以调整但不在训练过程中更新的参数称为超参数(hyperparameter)。
调参(hyperparameter tuning)是选择超参数的过程。
超参数通常是我们根据训练迭代结果来调整的,
而训练迭代结果是在独立的验证数据集(validation dataset)上评估得到的。

在训练了预先确定的若干迭代次数后(或者直到满足某些其他停止条件后),
我们记录下模型参数的估计值,表示为 w ^ , b ^ \hat{\mathbf{w}}, \hat{b} w^,b^
但是,即使我们的函数确实是线性的且无噪声,这些估计值也不会使损失函数真正地达到最小值。
因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内非常精确地达到最小值。

线性回归恰好是一个在整个域中只有一个最小值的学习问题。
但是对于像深度神经网络这样复杂的模型来说,损失平面上通常包含多个最小值。
深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集上的损失达到最小。
事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失,
这一挑战被称为泛化(generalization)。

用模型进行预测

给定“已学习”的线性回归模型 w ^ ⊤ x + b ^ \hat{\mathbf{w}}^\top \mathbf{x} + \hat{b} w^x+b^
现在我们可以通过房屋面积 x 1 x_1 x1和房龄 x 2 x_2 x2来估计一个(未包含在训练数据中的)新房屋价格。
给定特征估计目标的过程通常称为预测(prediction)或推断(inference)。

本书将尝试坚持使用预测这个词。
虽然推断这个词已经成为深度学习的标准术语,但其实推断这个词有些用词不当。
在统计学中,推断更多地表示基于数据集估计参数。
当深度学习从业者与统计学家交谈时,术语的误用经常导致一些误解。

矢量化加速

在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。
为了实现这一点,需要(我们对计算进行矢量化,
从而利用线性代数库,而不是在Python中编写开销高昂的for循环
)。

%matplotlib inline  
# 默认plot是嵌入在matplotlib里面
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

为了说明矢量化为什么如此重要,我们考虑(对向量相加的两种方法)。
我们实例化两个全为1的10000维向量。
在一种方法中,我们将使用Python的for循环遍历向量;
在另一种方法中,我们将依赖对+的调用。

n = 10000
a = torch.ones(n)
b = torch.ones(n)

由于在本书中我们将频繁地进行运行时间的基准测试,所以[我们定义一个计时器]:

class Timer:  #@save
    """记录多次运行时间"""
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        """启动计时器"""
        self.tik = time.time()

    def stop(self):
        """停止计时器并将时间记录在列表中"""
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def avg(self):
        """返回平均时间"""
        return sum(self.times) / len(self.times)

    def sum(self):
        """返回时间总和"""
        return sum(self.times)

    def cumsum(self):
        """返回累计时间"""
        return np.array(self.times).cumsum().tolist()

现在我们可以对工作负载进行基准测试。

首先,[我们使用for循环,每次执行一位的加法]。

c = torch.zeros(n)
timer = Timer()
for i in range(n):
    c[i] = a[i] + b[i]
f'{timer.stop():.5f} sec'
'0.08480 sec'

(或者,我们使用重载的+运算符来计算按元素的和)。

timer.start()
d = a + b
f'{timer.stop():.5f} sec'
'0.00000 sec'

结果很明显,第二种方法比第一种方法快得多。
矢量化代码通常会带来数量级的加速。
另外,我们将更多的数学运算放到库中,而无须自己编写那么多的计算,从而减少了出错的可能性。

正态分布与平方损失

🏷subsec_normal_distribution_and_squared_loss

接下来,我们通过对噪声分布的假设来解读平方损失目标函数。

正态分布和线性回归之间的关系很密切。
正态分布(normal distribution),也称为高斯分布(Gaussian distribution),
最早由德国数学家高斯(Gauss)应用于天文学研究。
简单的说,若随机变量 x x x具有均值 μ \mu μ和方差 σ 2 \sigma^2 σ2(标准差 σ \sigma σ),其正态分布概率密度函数如下:

p ( x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( x − μ ) 2 ) . p(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (x - \mu)^2\right). p(x)=2πσ2 1exp(2σ21(xμ)2).

下面[我们定义一个Python函数来计算正态分布]。

def normal(x, mu, sigma):
    p = 1 / math.sqrt(2 * math.pi * sigma**2)
    return p * np.exp(-0.5 / sigma**2 * (x - mu)**2)

我们现在(可视化正态分布)。

# 再次使用numpy进行可视化
x = np.arange(-7, 7, 0.01)

# 均值和标准差对
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',
         ylabel='p(x)', figsize=(4.5, 2.5),
         legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UPHMJAtV-1651631905615)(output_13_0.svg)]

就像我们所看到的,改变均值会产生沿 x x x轴的偏移,增加方差将会分散分布、降低其峰值。

均方误差损失函数(简称均方损失)可以用于线性回归的一个原因是:
我们假设了观测中包含噪声,其中噪声服从正态分布。
噪声正态分布如下式:

y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,

其中, ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}(0, \sigma^2) ϵN(0,σ2)

因此,我们现在可以写出通过给定的 x \mathbf{x} x观测到特定 y y y似然(likelihood):

P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) . P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right). P(yx)=2πσ2 1exp(2σ21(ywxb)2).

现在,根据极大似然估计法,参数 w \mathbf{w} w b b b的最优值是使整个数据集的似然最大的值:

P ( y ∣ X ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) . P(\mathbf y \mid \mathbf X) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}). P(yX)=i=1np(y(i)x(i)).

根据极大似然估计法选择的估计量称为极大似然估计量
虽然使许多指数函数的乘积最大化看起来很困难,
但是我们可以在不改变目标的前提下,通过最大化似然对数来简化。
由于历史原因,优化通常是说最小化而不是最大化。
我们可以改为最小化负对数似然 − log ⁡ P ( y ∣ X ) -\log P(\mathbf y \mid \mathbf X) logP(yX)
由此可以得到的数学公式是:

− log ⁡ P ( y ∣ X ) = ∑ i = 1 n 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 . -\log P(\mathbf y \mid \mathbf X) = \sum_{i=1}^n \frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2. logP(yX)=i=1n21log(2πσ2)+2σ21(y(i)wx(i)b)2.

现在我们只需要假设 σ \sigma σ是某个固定常数就可以忽略第一项,
因为第一项不依赖于 w \mathbf{w} w b b b
现在第二项除了常数 1 σ 2 \frac{1}{\sigma^2} σ21外,其余部分和前面介绍的均方误差是一样的。
幸运的是,上面式子的解并不依赖于 σ \sigma σ
因此,在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

从线性回归到深度网络

到目前为止,我们只谈论了线性模型。
尽管神经网络涵盖了更多更为丰富的模型,我们依然可以用描述神经网络的方式来描述线性模型,
从而把线性模型看作一个神经网络。
首先,我们用“层”符号来重写这个模型。

神经网络图

深度学习从业者喜欢绘制图表来可视化模型中正在发生的事情。
在 :numref:fig_single_neuron中,我们将线性回归模型描述为一个神经网络。
需要注意的是,该图只显示连接模式,即只显示每个输入如何连接到输出,隐去了权重和偏置的值。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IMCZlhdb-1651631905616)(../img/singleneuron.svg)]

🏷fig_single_neuron

在 :numref:fig_single_neuron所示的神经网络中,输入为 x 1 , … , x d x_1, \ldots, x_d x1,,xd
因此输入层中的输入数(或称为特征维度,feature dimensionality)为 d d d
网络的输出为 o 1 o_1 o1,因此输出层中的输出数是1。
需要注意的是,输入值都是已经给定的,并且只有一个计算神经元。
由于模型重点在发生计算的地方,所以通常我们在计算层数时不考虑输入层。
也就是说, :numref:fig_single_neuron中神经网络的层数为1。
我们可以将线性回归模型视为仅由单个人工神经元组成的神经网络,或称为单层神经网络。

对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连,
我们将这种变换( :numref:fig_single_neuron中的输出层)
称为全连接层(fully-connected layer)或称为稠密层(dense layer)。
下一章将详细讨论由这些层组成的网络。

生物学

线性回归发明的时间(1795年)早于计算神经科学,所以将线性回归描述为神经网络似乎不合适。
当控制学家、神经生物学家沃伦·麦库洛奇和沃尔特·皮茨开始开发人工神经元模型时,
他们为什么将线性模型作为一个起点呢?
我们来看一张图片 :numref:fig_Neuron
这是一张由树突(dendrites,输入终端)、
细胞核(nucleu,CPU)组成的生物神经元图片。
轴突(axon,输出线)和轴突端子(axon terminal,输出端子)
通过突触(synapse)与其他神经元连接。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yvtIOL3I-1651631905616)(../img/neuron.svg)]

🏷fig_Neuron

树突中接收到来自其他神经元(或视网膜等环境传感器)的信息 x i x_i xi
该信息通过突触权重 w i w_i wi来加权,以确定输入的影响(即,通过 x i w i x_i w_i xiwi相乘来激活或抑制)。
来自多个源的加权输入以加权和 y = ∑ i x i w i + b y = \sum_i x_i w_i + b y=ixiwi+b的形式汇聚在细胞核中,
然后将这些信息发送到轴突 y y y中进一步处理,通常会通过 σ ( y ) \sigma(y) σ(y)进行一些非线性处理。
之后,它要么到达目的地(例如肌肉),要么通过树突进入另一个神经元。

当然,许多这样的单元可以通过正确连接和正确的学习算法拼凑在一起,
从而产生的行为会比单独一个神经元所产生的行为更有趣、更复杂,
这种想法归功于我们对真实生物神经系统的研究。

当今大多数深度学习的研究几乎没有直接从神经科学中获得灵感。
我们援引斯图尔特·罗素和彼得·诺维格谁,在他们的经典人工智能教科书
Artificial Intelligence:A Modern Approach :cite:Russell.Norvig.2016
中所说:虽然飞机可能受到鸟类的启发,但几个世纪以来,鸟类学并不是航空创新的主要驱动力。
同样地,如今在深度学习中的灵感同样或更多地来自数学、统计学和计算机科学。

小结

  • 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。
  • 矢量化使数学表达上更简洁,同时运行的更快。
  • 最小化目标函数和执行极大似然估计等价。
  • 线性回归模型也是一个简单的神经网络。

练习

  1. 假设我们有一些数据 x 1 , … , x n ∈ R x_1, \ldots, x_n \in \mathbb{R} x1,,xnR。我们的目标是找到一个常数 b b b,使得最小化 ∑ i ( x i − b ) 2 \sum_i (x_i - b)^2 i(xib)2
    1. 找到最优值 b b b的解析解。
      答:思路:设 ∑ i ( x i − b ) 2 \sum_i(x_i - b)^2 i(xib)2对b求导等于零
    2. 这个问题及其解与正态分布有什么关系?
      答:参考正态分布与平方损失的结论:在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。
  2. 推导出使用平方误差的线性回归优化问题的解析解。为了简化问题,可以忽略偏置 b b b(我们可以通过向 X \mathbf X X添加所有值为1的一列来做到这一点)。
    1. 用矩阵和向量表示法写出优化问题(将所有数据视为单个矩阵,将所有目标值视为单个向量)。
      答;X -> [X, 1], w -> [w,b].T,L(X, y, w) = 1/(2*n)||y - Xw||^2
    2. 计算损失对 w w w的梯度。
      答:L对w求导
    3. 通过将梯度设为0、求解矩阵方程来找到解析解。
      答:w*=(X.T*X)^(-1)X.Ty
    4. 什么时候可能比使用随机梯度下降更好?这种方法何时会失效?
      答:模型比较简单时这种方法可能比梯度下降更好。X^TX不可逆时失效
  3. 假定控制附加噪声 ϵ \epsilon ϵ的噪声模型是指数分布。也就是说, p ( ϵ ) = 1 2 exp ⁡ ( − ∣ ϵ ∣ ) p(\epsilon) = \frac{1}{2} \exp(-|\epsilon|) p(ϵ)=21exp(ϵ)
    1. 写出模型 − log ⁡ P ( y ∣ X ) -\log P(\mathbf y \mid \mathbf X) logP(yX)下数据的负对数似然。
      答:参考正态分布与平方损失章节可进行求解
    2. 你能写出解析解吗?
      答;无法写出解析解,绝对值不可导
    3. 提出一种随机梯度下降算法来解决这个问题。哪里可能出错?(提示:当我们不断更新参数时,在驻点附近会发生什么情况)你能解决这个问题吗?
      答:损失函数在最小值处不可导,可使用其他损失函数?可以使用smoothL1Loss

Discussions


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值