chapter_linear-networks:线性回归的简洁实现

本文介绍了如何利用PyTorch的高级API简洁地实现线性回归模型,包括数据加载、模型定义、损失函数和优化算法的使用,以及训练过程。通过对比生成数据集的真实参数和训练后模型参数的误差,展示了模型的有效性。
摘要由CSDN通过智能技术生成

线性回归的简洁实现

🏷sec_linear_concise
参考动手学深度学习教材对应章节:https://zh-v2.d2l.ai/
根据课程相关章节的Jupyter文件进行运行得到结果并导出。

在过去的几年里,出于对深度学习强烈的兴趣,
许多公司、学者和业余爱好者开发了各种成熟的开源框架。
这些框架可以自动化基于梯度的学习算法中重复性的工作。
在 :numref:sec_linear_scratch中,我们只运用了:
(1)通过张量来进行数据存储和线性代数;
(2)通过自动微分来计算梯度。
实际上,由于数据迭代器、损失函数、优化器和神经网络层很常用,
现代深度学习库也为我们实现了这些组件。

在本节中,我们将介绍如何(通过使用深度学习框架来简洁地实现)
:numref:sec_linear_scratch中的(线性回归模型)。

生成数据集

与 :numref:sec_linear_scratch中类似,我们首先[生成数据集]。

import numpy as np
import torch
from torch.utils import data # 处理数据的模块
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取数据集

我们可以[调用框架中现有的API来读取数据]。
我们将featureslabels作为API的参数传递,并通过数据迭代器指定batch_size
此外,布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。

def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays) # 将数据转成张量的形式
    return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)

使用data_iter的方式与我们在 :numref:sec_linear_scratch中使用data_iter函数的方式相同。为了验证是否正常工作,让我们读取并打印第一个小批量样本。
与 :numref:sec_linear_scratch不同,这里我们使用iter构造Python迭代器,并使用next从迭代器中获取第一项。

next(iter(data_iter)) # 使用iter迭代器实现数据迭代
[tensor([[-0.6402,  1.2268],
         [-0.4186,  0.2707],
         [ 0.1320,  0.2841],
         [-0.0858, -1.3369],
         [ 0.5448,  1.5342],
         [-0.2209, -0.3291],
         [ 0.1416,  0.9169],
         [-0.5923,  0.7205],
         [ 1.5102, -0.8642],
         [ 0.6194,  0.2463]]),
 tensor([[-1.2446],
         [ 2.4507],
         [ 3.5097],
         [ 8.6125],
         [ 0.0568],
         [ 4.8944],
         [ 1.3671],
         [ 0.5744],
         [10.1576],
         [ 4.6053]])]

定义模型

当我们在 :numref:sec_linear_scratch中实现线性回归时,
我们明确定义了模型参数变量,并编写了计算的代码,这样通过基本的线性代数运算得到输出。
但是,如果模型变得更加复杂,且当你几乎每天都需要实现模型时,你会想简化这个过程。
这种情况类似于为自己的博客从零开始编写网页。
做一两次是有益的,但如果每个新博客你就花一个月的时间重新开始编写网页,那并不高效。

对于标准深度学习模型,我们可以[使用框架的预定义好的层]。这使我们只需关注使用哪些层来构造模型,而不必关注层的实现细节。
我们首先定义一个模型变量net,它是一个Sequential类的实例。
Sequential类将多个层串联在一起。
当给定输入数据时,Sequential实例将数据传入到第一层,
然后将第一层的输出作为第二层的输入,以此类推。
在下面的例子中,我们的模型只包含一个层,因此实际上不需要Sequential
但是由于以后几乎所有的模型都是多层的,在这里使用Sequential会让你熟悉“标准的流水线”。

回顾 :numref:fig_single_neuron中的单层网络架构,
这一单层被称为全连接层(fully-connected layer),
因为它的每一个输入都通过矩阵-向量乘法得到它的每个输出。

在PyTorch中,全连接层在Linear类中定义。
值得注意的是,我们将两个参数传递到nn.Linear中。
第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。

# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1)) # Sequential容器,类似list,按顺序存放

(初始化模型参数)

在使用net之前,我们需要初始化模型参数。
如在线性回归模型中的权重和偏置。
深度学习框架通常有预定义的方法来初始化参数。
在这里,我们指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采样,
偏置参数将初始化为零。

正如我们在构造nn.Linear时指定输入和输出尺寸一样,
现在我们能直接访问参数以设定它们的初始值。
我们通过net[0]选择网络中的第一个图层,
然后使用weight.databias.data方法访问参数。
我们还可以使用替换方法normal_fill_来重写参数值。

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
tensor([0.])

定义损失函数

[计算均方误差使用的是MSELoss类,也称为平方 L 2 L_2 L2范数]。
默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

定义优化算法

小批量随机梯度下降算法是一种优化神经网络的标准工具,
PyTorch在optim模块中实现了该算法的许多变种。
当我们(实例化一个SGD实例)时,我们要指定优化的参数
(可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。
小批量随机梯度下降只需要设置lr值,这里设置为0.03。

trainer = torch.optim.SGD(net.parameters(), lr=0.03) # 至少两个参数

训练

通过深度学习框架的高级API来实现我们的模型只需要相对较少的代码。
我们不必单独分配参数、不必定义我们的损失函数,也不必手动实现小批量随机梯度下降。
当我们需要更复杂的模型时,高级API的优势将大大增加。
当我们有了所有的基本组件,[训练过程代码与我们从零开始实现时所做的非常相似]。

回顾一下:在每个迭代周期里,我们将完整遍历一次数据集(train_data),
不停地从中获取一个小批量的输入和相应的标签。
对于每一个小批量,我们会进行以下步骤:

  • 通过调用net(X)生成预测并计算损失l(前向传播)。
  • 通过进行反向传播来计算梯度。
  • 通过调用优化器来更新模型参数。

为了更好的衡量训练效果,我们计算每个迭代周期后的损失,并打印它来监控训练过程。

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward() # pytorch实现了sum()
        trainer.step()
    l = loss(net(features), labels) # 预测
    print(f'epoch {epoch + 1}, loss {l:f}')
epoch 1, loss 0.000274
epoch 2, loss 0.000103
epoch 3, loss 0.000104

下面我们[比较生成数据集的真实参数和通过有限数据训练获得的模型参数]。
要访问参数,我们首先从net访问所需的层,然后读取该层的权重和偏置。
正如在从零开始实现中一样,我们估计得到的参数与生成数据的真实参数非常接近。

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape)) # 数据类型和维度上统一
b = net[0].bias.data
print('b的估计误差:', true_b - b)
w的估计误差: tensor([ 1.1630e-03, -2.0981e-05])
b的估计误差: tensor([-0.0010])
# 练习2
#%%
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

#%%
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

def load_array(data_arrays, batch_size, is_train = True): #@save
    '''pytorch数据迭代器'''
    dataset = data.TensorDataset(*data_arrays) # 把输入的两类数据一一对应;*表示对list解开入参
    return data.DataLoader(dataset, batch_size, shuffle = is_train) # 重新排序

batch_size = 10
data_iter = load_array((features, labels), batch_size) # 和手动实现中data_iter使用方法相同

#%%
# 构造迭代器并验证data_iter的效果
next(iter(data_iter))  # 获得第一个batch的数据

#%% 定义模型
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))  # Linear中两个参数一个表示输入形状一个表示输出形状
# sequential相当于一个存放各层数据的list,单层时也可以只用Linear

#%% 初始化模型参数
# 使用net[0]选择神经网络中的第一层
net[0].weight.data.normal_(0, 0.01) # 正态分布
net[0].bias.data.fill_(0)

#%% 定义损失函数
loss = torch.nn.HuberLoss()
#%% 定义优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.03) # optim module中的SGD
#%% 训练
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch+1}, loss {l:f}')

#%% 查看误差
w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

epoch 1, loss 2.251809
epoch 2, loss 0.377504
epoch 3, loss 0.001028
w的估计误差: tensor([ 0.0185, -0.0296])
b的估计误差: tensor([0.0263])

小结

  • 我们可以使用PyTorch的高级API更简洁地实现模型。
  • 在PyTorch中,data模块提供了数据处理工具,nn模块定义了大量的神经网络层和常见损失函数。
  • 我们可以通过_结尾的方法将参数替换,从而初始化参数。

练习

  1. 如果将小批量的总损失替换为小批量损失的平均值,你需要如何更改学习率?
    答:学习率除以n,即L/n。
  2. 查看深度学习框架文档,它们提供了哪些损失函数和初始化方法?用Huber损失代替原损失,即
    l ( y , y ′ ) = { ∣ y − y ′ ∣ − σ 2  if  ∣ y − y ′ ∣ > σ 1 2 σ ( y − y ′ ) 2  其它情况 l(y,y') = \begin{cases}|y-y'| -\frac{\sigma}{2} & \text{ if } |y-y'| > \sigma \\ \frac{1}{2 \sigma} (y-y')^2 & \text{ 其它情况}\end{cases} l(y,y)={yy2σ2σ1(yy)2 if yy>σ 其它情况
    答:参考pytorch官网的torch.nn.functional.
  3. 你如何访问线性回归的梯度?
    答:net[0]表示网络的参数,net[0].weight.grad, net[0].bias.grad

Discussions

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值