自己编程实现抖音特效(Python)

最近被抖音的各种神奇特效折服的不行不行的,于是准备自己写一个简单的小特效,下面开始进入正题:
首先我们要知道特效要实现的功能。
本人毕竟第一次弄,就选择一个简单的特效------戴帽子
框架搭建思路:
在这里插入图片描述

人脸识别

这里的人脸识别采用开源库OpenCV中的haarcascade_frontalface_default.xml文件进行检测,这个文件在OpenCV官网上或者GitHub上就可以下载,这里挂个网址:
https://github.com/opencv/opencv/tree/master/data/haarcascades
需要下载哪个文件,点进去,右键单击Raw即可下载。
经后期实践证明,这个方法并不太好,对于侧脸和遮挡不能很好的检测出人脸。
这里做一个简单的例子对文件的使用进行说明:

import cv2
import numpy as np
# 调用文件
face = cv2.CascadeClassifier("./haarcascade_frontalface_default.xml")
# 打开摄像头,
cap = cv2.VideoCapture(0)
while True:
	# ret 返回布尔值,frame表示每帧图像
    ret, frame = cap.read()
    # 灰度转换
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    face_detection = face.detectMultiScale(gray, 1.1, 5)
    if len(face_detection) > 0:
        for faceRect in face_detection:
        	# 左上角坐标和长宽
            x, y, w, h = faceRect
            # 绘制边框矩形,线宽为2
            cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)          
    cv2.imshow("face", frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

运行上述示例,就可以看到自己帅气、美丽的脸庞被框起来了(虽然效果不太好)。这里我们需要的参数有x, y, w, h ,也就是边框左上角坐标和边框矩形的长和宽。

人脸关键点定位

这里采用深度学习对人脸关键点进行定位,环境配置:
win10+OPENCV4+TensorFlow(CPU)1.8
具体操作可参照:
基于OpenCV和tensorflow的人脸关键点检测
手把手教你做人脸识别和关键点检测(基于tensorflow和opencv)
我的深度学习训练和测试代码是根据上述两篇博客进行修改的,数据集采用
Facial Keypoints Detection数据集,这个网上下载有点麻烦,需要注册啥的,如果需要的话可以私信我,或者发我邮箱: machine_vision0876@163.com 。数据集如下图所示:
在这里插入图片描述
下面进入正题:神经网络结构采用三层神经网络,两层全连接,池化方式为最大值,激活函数为Relu,Dropout为0.7。经过150次左右的迭代,loss趋于稳定,大约为1.12。下面将附上训练代码,代码大部分是上面提到的博客提供的代码,做了略微的改动以适应版本配置需求。

import matplotlib.pyplot as plt
import os
import tensorflow as tf
import pandas as pd
import numpy as np

def input_data(train=True):
    # 获取训练集和测试集
    file_name = train_csv if train else test_csv

    df = pd.read_csv(file_name)
    cols = df.columns[:-1]
    df = df.dropna()  # 丢弃有缺失数据的样本
    df['Image'] = df['Image'].apply(
        lambda img: np.fromstring(img, sep=' ') / 255.0)  # 归一化输入的数据
    X = np.vstack(df['Image'])
    X = X.reshape((-1, 96, 96, 1))
    if train:
        y = df[cols].values / 96.0  # 将坐标缩放到0,1区间,加速收敛
    else:
        y = None
    print(df.describe())
    return X, y

train_csv = './data/facial-keypoint-detection/training.csv'
test_csv = './data/facial-keypoint-detection/test.csv'
valid_size = 100  # 验证集大小
train_epoches = 300 # 循环训练次数
batch_size = 64  # mini-batch的大小
learning_rate = 0.001  # 学习率

def weights_variable(shape, namew='w'):
    # 初始化权重
    initial = tf.truncated_normal(shape=shape, stddev=0.1)
    return tf.Variable(initial, name=namew)
def biases_variable(shape, nameb='b'):
    # 初始化偏置
    initial 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值