Chainlit接入FastGpt接口快速实现自定义用户聊天界面

前言

由于fastgpt只提供了一个分享用的网页应用,网页访问地址没法自定义,虽然可以接入NextWeb/ChatGPT web等开源应用。但是如果我们想直接给客户应用,还需要客户去设置配置,里面还有很多我们不想展示给客户的东西怎么办?于是,我使用Chainlit实现了一个无缝快速接入fastgpt实现自定义用户使用界面的应用,代码清晰简单。还可以自定义logo、欢迎语、网站图标等。

快速开始

获取fastgpt的base_url和api_key

登录fastgpt后台,在工作台里,点击自己创建的AI应用,点击发布渠道,点击API访问创建,访问APIKEY.
在这里插入图片描述

  • 复制API_KEYAPI根地址,后面需要配置到Chainlit的环境变量中

chainlit网页搭建

创建一个文件,例如“chainlit_chat”

mkdir chainlit_chat

进入 chainlit_chat文件夹下,执行命令创建python 虚拟环境空间(需要提前安装好python sdkChainlit 需要python>=3.8。,具体操作,由于文章长度问题就不在叙述,自行百度),命令如下:

python -m venv .venv
  • 这一步是避免python第三方库冲突,省事版可以跳过
  • .venv是创建的虚拟空间文件夹可以自定义

接下来激活你创建虚拟空间,命令如下:

#linux or mac
source .venv/bin/activate
#windows
.venv\Scripts\activate

在项目根目录下创建requirements.txt,内容如下:

chainlit~=1.1.306
openai~=1.37.0

在项目根目录下创建app.py文件,代码如下:

import base64
import time
from io import BytesIO

import chainlit as cl
from chainlit.element import ElementBased
from chainlit.input_widget import Select, Slider, Switch
from openai import AsyncOpenAI

client = AsyncOpenAI()





@cl.on_chat_start
async def start_chat1():
    content = "你好,我是泰山AI智能客服,有什么可以帮助您吗?"
    msg = cl.Message(content="")
    for token in content:
        time.sleep(0.2)
        await msg.stream_token(token)
    await msg.send()


@cl.on_message
async def main(message: cl.Message):
    msg = cl.Message(content="", author="tarzan")
    await msg.send()
    response = await client.chat.completions.create(
        model="gpt-3.5", # 这里随便写,fastgpt接口最终使用的是你后台配置的模型
        messages=cl.chat_context.to_openai(),
        stream=streaming
    )
    if streaming:
        async for part in response:
            #print('part', part)
            if token := part.choices[0].delta.content or "":
                await msg.stream_token(token)
    else:
        #print('response', response)
        if token := response.choices[0].message.content or "":
            await msg.stream_token(token)
    await msg.update()

  • 传入的model,temperature等参数字段均无效,这些字段由编排决定,不会根据 API 参数改变。

  • 不会返回实际消耗Token值,如果需要,可以设置detail=true,并手动计算 responseData 里的tokens值。

在项目根目录下创建.env环境变量,配置如下:

OPENAI_BASE_URL="https://api.fastgpt.in/api/v1"
OPENAI_API_KEY="fastgpt-key"
  • 配置里替换为自己应用的api根地址api的key
  • api根地址需要加上/v1,私有化部署替换成私有化的 api根地址

执行以下命令安装依赖:

pip install -r .\requirements.txt
  • 安装后,项目根目录下会多出.chainlit.files文件夹和chainlit.md文件

运行应用程序

要启动 Chainlit 应用程序,请打开终端并导航到包含的目录app.py。然后运行以下命令:

 chainlit run app.py -w   
  • -w标志告知 Chainlit 启用自动重新加载,因此您无需在每次更改应用程序时重新启动服务器。您的聊天机器人 UI 现在应该可以通过http://localhost:8000访问。
  • 自定义端口可以追加--port 80

命令行选项

Chainlit CLI(命令行界面)是一种允许您通过命令行与 Chainlit 系统交互的工具。它提供了几个命令来管理您的 Chainlit 应用程序。

init 命令

该init命令通过创建位于以下位置的配置文件来初始化 Chainlit 项目.chainlit/config.toml

chainlit init

run 命令

该run命令启动 Chainlit 应用程序。

chainlit run [OPTIONS] TARGET

选项:

  • -w, --watch :模块更改时重新加载应用程序。指定此选项后,将启动文件监视程序,对文件的任何更改都会导致服务器重新加载应用程序,从而实现更快的迭代。
  • -h, --headless:阻止应用程序在浏览器中打开。
  • -d, --debug :将日志级别设置为调试。默认日志级别为错误。
  • -c, --ci :以 CI 模式运行。
  • --no-cache :禁用第三方缓存,例如 langchain。
  • --host :指定运行服务器的其他主机。
  • --port :指定运行服务器的不同端口。
  • --root-path :指定运行服务器的子路径。

启动后界面如下:
在这里插入图片描述

相关文章推荐

《使用 Xinference 部署本地模型》
《Fastgpt接入Whisper本地模型实现语音输入》
《Fastgpt部署和接入使用重排模型bge-reranker》
《Fastgpt部署接入 M3E和chatglm2-m3e文本向量模型》
《Fastgpt 无法启动或启动后无法正常使用的讨论(启动失败、用户未注册等问题这里)》
《vllm推理服务兼容openai服务API》
《vLLM模型推理引擎参数大全》
《解决vllm推理框架内在开启多显卡时报错问题》
《Ollama 在本地快速部署大型语言模型,可进行定制并创建属于您自己的模型》

  • 24
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
`Chainlit`是一个用于构建和部署机器学习模型的Python库,它主要针对Jupyter Notebook环境。这个库使得创建、测试和部署复杂的机器学习工作流程变得简单,并提供了一种直观的方式来组织和管理各种任务。 当你尝试运行`chainlit`并收到错误信息“不是内部或外部命令,也不是可运行的程序或批处理文件”,这通常意味着你的Python环境并没有安装或无法找到这个库。解决这个问题的步骤如下: ### 解决方案 #### 1. 安装`chainlit` 如果你的环境中还没有`chainlit`,你可以通过pip安装它。在命令行界面输入以下命令: ```bash pip install chainlit ``` 如果你使用的是虚拟环境,确保先激活了你的虚拟环境再执行上述命令。 #### 2. 检查是否安装成功 安装完成后,你可以通过导入`chainlit`模块来检查是否已正确安装: ```python import chainlit ``` 如果没有任何异常并且能够顺利导入该模块,则说明`chainlit`已经成功安装。 ### 相关问题: 1. **如何验证`chainlit`是否已经被安装?** - 使用 `pip list` 命令查看当前安装的所有Python包列表,查找是否有`chainlit`项。 2. **在特定项目中安装`chainlit`而不是全局安装?** - 创建一个新的虚拟环境并在其中安装`chainlit`,避免影响系统级别的Python安装。可以使用 `conda create -n myenv` 和 `conda activate myenv` 来创建和激活虚拟环境,然后在该环境下执行 `pip install chainlit`。 3. **如何更新到最新版本的`chainlit`?** - 如果需要更新到最新的`chainlit`版本,可以使用 `pip install --upgrade chainlit` 命令。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泰山AI

原创不易,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值