Chainlit集成LlamaIndex和Chromadb实现RAG增强生成对话AI应用

前言

本文主要讲解如何使用LlamaIndexChromadb向量数据库实现RAG应用,并使用Chainlit快速搭建一个前端对话网页,实现RAG聊天问答增强的应用。文章中还讲解了LlamaIndex CallbackManager回调,实现案例是使用TokenCountingHandler,实现tokens使用计算回调应用。方便知道自己的tokens使用量。

LlamaIndex 回调

LlamaIndex 提供回调来帮助调试、跟踪和追溯库的内部工作。使用回调管理器,可以根据需要添加尽可能多的回调。

除了记录与事件相关的数据之外,您还可以跟踪每个事件的持续时间和发生的次数。

此外,还会记录事件的跟踪图,回调可以随意使用这些数据。例如,LlamaDebugHandler默认情况下,大多数操作后都会打印事件的跟踪。

回调事件类型 虽然每个回调可能不会利用每种事件类型,但可以跟踪以下事件:

  • CHUNKING-> 文本分割前后的日志。
  • NODE_PARSING-> 文档及其解析成的节点的日志。
  • EMBEDDING-> 记录嵌入的文本数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泰山AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值