Matlab求解点到直线距离

点到直线的距离公式推导:
这里写图片描述
Matlab程序:

syms x y z
A=[1,3,5]; %假定三点坐标
B=[2,4,6];
C=[7,8,9];
D=[ones(4,1),[[x,y,z];A;B;C]];%由空间解析几何的内容知道D的行列式等于零就是平面方程。
detd=det(D);
disp(strcat(‘平面方程为:’,char(detd),’=0’))

%下面的图像只当能解出显式z时才画的出来:

z=solve(detd,z);%这是解出来的
plot3(1,3,5,’‘,2,4,7,’‘,1,5,6,’*’)
hold on
ezmesh(z)
这里写图片描述

关于如何提取其中的参数:
用命令 coeffs(d)

COEFFS Coefficients of a multivariate polynomial.
C = COEFFS(P) returns the coefficients of the polynomial P with
respect to all the indeterminates of P.
C = COEFFS(P,X) returns the coefficients of the polynomial P with
respect to X.
[C,T] = COEFFS(P,…) also returns an expression sequence of the
terms of P. There is a one-to-one correspondence between the
coefficients and the terms of P.

Examples:

syms x
t = 2 + (3 + 4*log(x))^2 - 5*log(x);
coeffs(expand(t)) = [ 11, 19, 16]

syms a b c x
y = a + b*sin(x) + c*sin(2*x)
coeffs(y,sin(x)) = [a + c*sin(2*x), b]
coeffs(expand(y),sin(x)) = [a, b + 2*c*cos(x)]

syms x y
z = 3*x^2*y^2 + 5*x*y^3
coeffs(z) = [5, 3]
coeffs(z,x) = [5*y^3, 3*y^2]
[c,t] = coeffs(z,y)
returns c = [5*x, 3*x^2], t = [y^3, y^2]

coeffs(d)

ans = [ 4, -2, 1, 3]

参考博客:http://www.cnblogs.com/graphics/archive/2010/07/10/1774809.html

### MATLAB计算点到直线距离的方法 在 MATLAB 中,可以通过几何方法和矩阵运算来实现点到直线距离计算。以下是具体的实现方式以及代码示例。 #### 几何原理 给定三维空间中的一个点 \( P(x_0, y_0, z_0) \),一条通过点 \( V_p(x_v, y_v, z_v) \) 并沿方向矢量 \( \vec{v}(a, b, c) \) 的直线,可以利用叉积公式计算点到直线距离: \[ d = \frac{\|\vec{AP} \times \vec{v}\|}{\|\vec{v}\|} \] 其中: - \( A \) 是直线上的一点, - \( \vec{AP} \) 表示从点 \( A \) 到点 \( P \) 的向量, - \( \vec{v} \) 是直线的方向向量。 此公式的推导基于向量代数[^1]。 #### 实现代码 下面是一个完整的 MATLAB 脚本,用于计算点到直线距离并绘制可视化图形。 ```matlab function distance = ptol(p, v, vp) % 输入参数说明: % p: 点的坐标 (x0, y0, z0), 形状为 [3x1 或 1x3] % v: 方向向量 (a, b, c), 形状为 [3x1 或 1x3] % vp: 直线上的点 (xv, yv, zv), 形状为 [3x1 或 1x3] % 将输入转换为列向量形式 p = p(:); v = v(:); vp = vp(:); % 计算 AP 向量 Ap = p - vp; % 叉乘 |Ap × v| cross_product = cross(Ap, v); % 计算分母 ||v|| norm_v = norm(v); % 计算距离 distance = norm(cross_product) / norm_v; end % 测试数据 p = [1; 1; 4]; % 已知点 vp = [2; 3; 7]; % 直线上的点 v = [-1; -2; 1]; % 直线的方向向量 % 调用函数计算距离 distance = ptol(p, v, vp); disp(['The distance from the point to the line is ', num2str(distance)]); % 绘制可视化图 figure; hold on; grid on; % 绘制直线 t = linspace(-10, 10, 100)'; line_points = bsxfun(@plus, t * v, vp'); plot3(line_points(:,1), line_points(:,2), line_points(:,3), 'b', 'LineWidth', 1.5); % 绘制点 scatter3(p(1), p(2), p(3), 'r', 'filled'); % 添加标签 xlabel('X-axis'); ylabel('Y-axis'); zlabel('Z-axis'); title('Point-to-Line Distance Visualization'); legend('Line','Point'); ``` 上述代码实现了点到直线距离计算,并提供了可视化的结果[^2]。 #### 结果解释 运行以上脚本后,程序会输出点到直线距离数值,并显示包含直线和目标点的空间分布图。这有助于直观理解两者之间的关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值