deepseek r1 or deepseek v3

各位领导,先思考deepseek R1与V3适合什么任务再去迁移应用接口吧!!!

Deepseek 的三种模式(V3、R1 和联网搜索)各有特点,适用于不同的任务场景。以下是它们的差异和适用场景:

  1. 基础模型 (V3)

    特点:

     通用性强:适用于大多数日常任务,高效便捷。
    
     规范性任务:适合处理有明确目标、规范约束的任务。
    
     结果驱动:更注重输出结果,适合模糊目标的任务。
    
     聪明且听话:在遵循指令和提供标准答案方面表现较好。
    

    适用场景:

     日常问答、文本生成、简单推理、常规编程任务等。
    
     需要快速得到结果的任务,尤其是那些不需要深度分析的任务。
    
  2. 深度思考模型 (R1)

    特点:

     复杂推理:适合处理需要深度分析、逻辑推理的任务。
    
     开放性任务:适合探索性、创造性任务,如复杂数学问题、代码优化等。
    
     过程驱动:更注重推理过程,适合需要逐步分析的任务。
    
     很聪明但没那么听话:可能在遵循指令上不如 V3 严格,但在复杂任务上表现更出色。
    

    适用场景:

     复杂数学问题、逻辑推理、代码调试、算法设计等。
    
     需要深入分析和创造性解决方案的任务。
    
  3. 联网搜索 (RAG)

    特点:

     知识库更新:知识库更新至 2024 年 7 月,能够提供最新的信息。
    
     检索增强生成:通过检索外部信息来增强生成内容,适合需要实时或最新知识的任务。
    

    适用场景:

     需要最新信息或数据的任务,如时事新闻、最新研究成果等。
    
     需要结合外部知识库进行回答的任务。
    

如何选择 V3 还是 R1?

选择 V3:

    如果你的任务是常规的、结果驱动的,且不需要复杂的推理过程。

    如果你需要快速得到答案,且任务有明确的规范和约束。

    例如:日常问答、简单编程、文本生成等。

选择 R1:

    如果你的任务需要深度分析、复杂推理或创造性解决方案。

    如果你的任务是开放性的,且需要逐步推理和探索。

    例如:复杂数学问题、代码优化、算法设计等。

总结:

V3 更适合“规范性”任务,注重结果,聪明且听话。

R1 更适合“开放性”任务,注重过程,聪明但更灵活。

联网搜索 适合需要最新信息的任务。

根据你的任务类型和需求,选择合适的模型可以提高效率和效果。

还有就是看看口袋里面的钱,公司里面的显卡。不要说公司里连两台H200都没有就想着既要部署deepseek r1 有要部署 deepseek v3。

DeepSeek V3 实战手册

概述

本手册提供基于 SGLang 推理引擎部署 DeepSeek V3 模型的完整指南,涵盖硬件选型、环境配置、性能优化及多节点部署方案。SGLang 作为官方推荐推理引擎,通过 MLA 优化、DP Attention 等特性实现业界领先的吞吐性能。

硬件要求

推荐配置

场景 硬件配置 显存需求
单节点推理 8x NVIDIA H200 GPUs 每卡≥80GB
高吞吐生产环境 2节点 x 8x NVIDIA H200 分布式部署
AMD平台 AMD MI300X 单卡 参考微软技术博客

注意事项

  • 显存不足时启用多节点Tensor并行
  • FP8模型需H200/H100等支持FP8指令集的GPU
  • BF16版本模型需转换原始检查点(详见"多节点部署"章节)

环境配置

方式一:Docker部署(推荐)

# 拉取最新镜像
docker pull lmsysorg/sglang:latest

# 启动服务(单节点8卡)
docker run --gpus all --shm-size 32g -p 30000:30000 \
  -v ~/.cache/huggingface:/root/.cache/huggingface \
  --ipc=host 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值