以 **DeepSeek-R1-Distill-Qwen-32B** 模型的部署为例,结合 `vLLM` 框架的实践日志,详细解析大模型服务化部署的核心参数配置与优化技巧

在深度学习模型的部署过程中,如何高效利用计算资源并实现低延迟推理是关键挑战。本文将以 DeepSeek-R1-Distill-Qwen-32B 模型的部署为例,结合 vLLM 框架的实践日志,详细解析大模型服务化部署的核心参数配置与优化技巧。


一、vLLM 服务启动命令解析

1.1 基础启动命令

vllm serve /home/models/DeepSeek-R1-Distill-Qwen-32B \
    --max-model-len 14944 \
    --enforce-eager \
    --dtype bfloat16
关键参数说明:
  • --max-model-len 14944
    设置模型支持的最大序列长度。需根据硬件显存调整,过大会导致 OOM 错误。

  • --enforce-eager
    禁用 CUDA 图(CUDA Graphs),强制使用 PyTorch 的 Eager 模式。牺牲部分性能以提升调试灵活性。

  • --dtype b

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值