在深度学习模型的部署过程中,如何高效利用计算资源并实现低延迟推理是关键挑战。本文将以 DeepSeek-R1-Distill-Qwen-32B 模型的部署为例,结合 vLLM
框架的实践日志,详细解析大模型服务化部署的核心参数配置与优化技巧。
一、vLLM 服务启动命令解析
1.1 基础启动命令
vllm serve /home/models/DeepSeek-R1-Distill-Qwen-32B \
--max-model-len 14944 \
--enforce-eager \
--dtype bfloat16
关键参数说明:
-
--max-model-len 14944
设置模型支持的最大序列长度。需根据硬件显存调整,过大会导致 OOM 错误。 -
--enforce-eager
禁用 CUDA 图(CUDA Graphs),强制使用 PyTorch 的 Eager 模式。牺牲部分性能以提升调试灵活性。 -
--dtype b