word给整篇文章注释拼音

本文介绍了一种利用Word宏及替换命令高效为大量汉字自动加注拼音的方法,解决了传统Word注音功能处理长文档时的局限性,提高了正确率与效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:近期给小孩打印课文,想到加注拼音方便小孩阅读。

目标:给每个汉字标注拼音,同时为了方便阅读每个汉字之间预留一个空格。(因为word注音如果不空格,拼音连在一起不便区分)

遇到的困难:word 2016的注音功能只能给大概二三十字一次性注音(未详细数到底多少),对于成百上千字的文档注音就很繁琐

解决方法:使用word中的宏,在网上搜集资料找到这篇文章:

https://www.cnblogs.com/DreamlikeAttic/p/3655863.html

对它做了一些修改,步骤如下:

     1) 删掉了宏中分隔文字的片段:(有这段代码的宏处理速度会大大降低,且word总是崩溃)

     2)使用word中替换命令,实现文字的自动分隔,(分隔速度极快)

                  Ctrl+H(替换快捷键)->  “空格^&”(不含引号)并把高级选项中的 “使用通配符”打开。

     3)调好预期的字体,大小等等

    4)运行如下宏

Sub AddPinYin()
'Author:MissileCat Date:20140410 version:1.0.0
' Addpinyin 宏
'为一篇完整的word文字加上标音标注

    Dim tintTreatingCount As Integer
    Dim tstrCharA As String
    Dim tlngCurPos As Long
    Dim tintA As Integer


    Selection.WholeStory
    tstrText = Selection.Text
    tintTextLength = Selection.Characters.Count
    tintlinestart = 1

    tintTreatingCount = 0

    Selection.GoTo What:=wdGoToHeading, Which:=wdGoToAbsolute, Count:=1

   Selection.MoveRight unit:=wdCharacter, Count:=1, Extend:=wdExtend
   
    Selection.GoTo What:=wdGoToHeading, Which:=wdGoToAbsolute, Count:=1
    
    For tintloopx = 1 To tintTextLength
     
      tlngCurPos = Selection.MoveRight(unit:=wdCharacter, Count:=1, Extend:=wdExtend)
      
      tstrCharA = Right(Selection.Text, 1)
      If AscW(tstrCharA) < 255 And AscW(tstrCharA) > -255 Then
      
        If tintTreatingCount > 0 Then
            tintA = Len(Selection.Text)
        
            SendKeys "{enter}", 1
            Application.Run MacroName:="FormatPhoneticGuide"
             
            Selection.MoveRight unit:=wdCharacter, Count:=tintA

            tintTreatingCount = 0

        End If
      
      Else
      
         tintTreatingCount = tintTreatingCount + 1
      
      End If
      
    Next
    
End Sub

按照我这个顺序执行,最大的优点就是正确率高,(我实验的几次都没有出现错误),但是原作者的方法有很多漏注的字,但是也存在很大的缺点就是,速度慢。

    原因是我先分隔汉字,然后注音,就是每个字都执行一次注音程序,而原作者方法是多个字一注音。

  如有大神有更快的方法,希望给我评论。

 

以下是文章的主要内容摘要: ### 文章标题:通过改进相位一致性模型实现光学和合成孔径雷达图像自动配准 #### 摘要 本文提出了一种使用改进后的相位一致性(PC)模型来解决光学与合成孔径雷达(SAR)图像自动高效配准的方法。首先,利用块哈里斯方法从光学图像中提取均匀分布的关键点,并在结构信息较差的区域补充网格点以完善关键点集。针对每个关键点,基于改进后的PC模型提出了一个捕捉局部空间关系的强大特征表示法。具体来说,我们分别使用经典PC和SAR-PC两种不同的PC模型为光学和SAR图像构建特征描述符,并通过特征描述符之间的相位相关性获得相似度量。所提出的相似度量不仅能够找到准确对应点,还能有效提供结果而无需预设搜索区域大小。此外,还构建了一个高分辨率光学和SAR图像匹配数据集,该数据集由10692个非重叠的256x256像素且分辨率为1米的图像对组成。实验表明,该方法优于基线方法,在具有丰富结构信息的区域内表现与最先进方法相当,在结构信息较少的区域表现更佳。 #### 引言 随着商业遥感图像的爆炸式增长,各种遥感应用开始联合使用多传感器图像,这要求两个或多个图像之间进行精确对齐,即遥感图像配准过程。光学和SAR图像是两种典型的遥感图像,由于其成像机制不同,它们表现出各种外观和能力。因此,同时处理光学和SAR图像对于如图像融合和变化检测等应用非常有用,这也凸显了光学和SAR图像配准的重要性。 #### 方法框架 本文提出的算法包括三个步骤:关键点检测、描述子构造以及变换估计。首先从光学图像中提取角点并添加网格点到关键点集中;然后设计一种基于PC特征的相似度量,用于定位对应点;最后通过鲁棒的异常值去除技术获得最终的对应点。通过对对应点数量和分布情况的检查,选择分段线性(PWL)变换模型或仿射变换模型应用于待配准图像。 #### 实验结果 实验部分比较了所提相似度量与其他基准方法(MI和NCC)及现有最先进方法(HOPC和CFOG)。结果表明,所提方法不仅能很好地应对噪声干扰,还能保持对大辐值差异的不变性。定量评价显示,所提方法在多种情况下均表现出较高的精度和准确性。 #### 数据集评估 本文构建了一个名为“OS”的高分辨率光学和SAR图像匹配数据集,共包含10692个非重叠的256x256像素图像对,适用于深度学习任务。通过两个基准网络(Siamese网络和条件生成对抗网络)对该数据集进行了验证,证明了其实用性和挑战性。 #### 结论 本文提出了一种自动高效的高分辨率光学和SAR图像配准算法,并建立了相应的高分辨率数据集。相比现有的最先进方法,该方法展现了更高的配准精度和普适性。未来工作将进一步增加数据集规模,并探索其他应用场景下的可能性。 --- 以上是对原文内容的专业简练中文翻译,请参考。如有需要进一步调整或详细解释的地方,请告知!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值