Jetson Nano(三):安装Tensorflow-GPU版本

本文安装一下机器学习会用到的一些库函数。

今天的目标是安装TensorFlow GPU版本,安装TensorFlow GPU版本需要成功配置好CUDA,没有配制好的请移步上一篇博文。不过在安装TensorFlow GPU之前,有一些机器学习必须用到的安装包也需要来安装一下。

注意:使用keras进行代码开发时,要注意是否安装tensorflow-cpu版本,建议不要安装,直接安装tensorflow-gpu,这样开发的神经网络模型本身可以用GPU进行加速,若使用cpu版本,则默认的backend是cpu版本的。

1. 安装pip

因为Jetson Nano中已经安装了Python3.6版本,所以安装pip还是比较简单的。但要注意不是简单的pip,要在下面的步骤中进行一定的处理,否则会报错出问题。

sudo apt-get install python3-pip python3-dev

笔者该步操作后,输出unabel to loacte  package python3-pip.经过一系列花式操作并没有改善,重启系统就好了。嗯,感觉自己进入了玄学领域??

之所以觉着重启可以改善,是因为之前操作时候这一步是没有问题的。且python3.6时原装的python,正常而言pip应该是配套的。

 

安装后pip是9.01版本,需要把它升级到最新版,升级后pip版本为19.0.3。这里面升级后会有一个小Bug,需要手动改一下

python3 -m pip install --upgrade pip  #升级pip

这里升级到了19.2.3版本。

sudo vim /usr/bin/pip3   #打开pip3文件

将源文件中的:

from pip import main
if __name__ == '__main__':
    sys.exit(main())

改为:

from pip import __main__
if __name__ == '__main__':
    sys.exit(__main__._main())

修改结束后保存,运行pip3 -V成功后显示:

beckhans@Jetson:~$ pip3 -V
pip 19.0.3 from /home/beckhans/.local/lib/python3.6/site-packages/pip (python 3.6)

此时要十分注意是__main__._main()这个地方容易眼花出错。

安装完pip后,就要安装机器学习领域那些著名的包。

 

2.安装机器学习领域著名的库包

sudo apt-get install python3-scipy
sudo apt-get install python3-pandas
sudo apt-get install python3-sklearn
sudo apt-get install python3-pyqt5   # for python3

这里没有numpy和matplotlib,在安装其他库时,该两个文件也会被安装。

 

3. 安装tensorflow-gpu版本

(1)确认CUDA已经被正常安装

nvcc -V

(2)安装所需要的包

sudo apt-get install python3-pip libhdf5-serial-dev hdf5-tools

因为之前已经费力安装了一遍pip,所以本次其实并没有安装pip。仅对后面两个必须的文件库进行了安装。

(3)安装TensorFlow GPU版本 

pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu==1.13.1+nv19.3 --user

如果是下载到了whl文件之后,需要对whl文件进行安装,代码如下:

$ pip3 install --user tensorflow-cp36-cp36m-linux_aarch64.whl

这里感激一波贝克汉鸭提供的whl文件

然而在一次安装中出现了一些问题,后来用了从官方下载的whl文件既可,这是由于在一些因素下(玄学),whl文件有损失,需要重新下载whl,这样子这些问题就会被消除了。

4.keras安装

pip3 install --user keras

至此,基础的库已经安装完成,接下来就是验证一下之前写的模型能不能炮筒,还缺少哪些文件,也花费了一个下午的时间,tensorflow的安装还是很慢的。

5. 测试模型

在测试tensorlow期间,出现一个问题。

import tensorflow 

出现以下错误提示

numpy是一个基础的数组计算包,Tensorflow、 tensorboard、Keras-Preprocessing、h5py、pandas等一系列常用的第三方库都需要numpy的支持。这里提示numpy.core._multiarray_umath failed to import和numpy.core.umath failed to import ,得知无法正常import tensorflow 的原因是numpy库的引用出了问题。应该是numpy版本和当前Tensorflow版本兼容性问题。
 

解决方法:

方法1:

 pip install --user --upgrade numpy   #将numpy更新到最新版本
 

方法2:

 pip install --upgrade --force-reinstall numpy==1.14.5   #重新安装合适的numpy版本
 或
 pip install numpy==1.16

#如果提示权限不够,‘[WinError 5]拒绝访问’,则需赋予管理员权限,用下面语句
 pip install --user --upgrade --force-reinstall numpy==1.14.5

1.14 1.16. 1.17版本都不会出现这个问题。至此完成了代码的调试工作。

经过(一)(二)(三)的教程既可完成jetsonnano深度学习环境的初步安装了,接下来既可以根据需求进行玩耍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值