【Udacity】3,5,19,噪声散点图

1、噪声散点图

install.packages('alr3')
library(alr3)
data("Mitchell")
?Mitchell
> ggplot(aes(x=Month,y=Temp),data=Mitchell)+
+     geom_point()

这里写图片描述
2、理解数据
似乎这两个变量并不相关,但是X轴是月份,是一个相对离散的变量,且月份是按照1-12一直往上叠加的。这里添加代码,将X轴断开,对应一年。

> ggplot(aes(x=Month,y=Temp),data=Mitchell)+
+     geom_point()+
+     scale_x_continuous(breaks = seq(0,203,12))

这里写图片描述
这里写图片描述
3、一个新的视角
当你伸缩上面的图形的时候,你会发现图形呈现正弦或者余弦图形,说明这个城市是四季变换的
说明:

  • 要把数据放在具体的背景下
  • 图形的比例和标度很重要
    要理解该数据,你还可以将每一年的数据相互叠加,构建出一个清晰的常规正弦曲线图。你可以在代码中使用 R 的模数运算符 %% 来这样做。尝试运行以下代码!
> ggplot(aes(x=(Month%%12),y=Temp),data=Mitchell)+ 
+     geom_point()

这里写图片描述

数据可视化先驱
John Tukey
William Playfair
William Playfair 和图形心理学

还可以使用其他的关联度量检测这一点。energy 包中的 dcor.ttest() 函数对两个变量的独立性执行非参数检验。尽管 Mitchell 土壤数据集太过粗糙,以至于无法识别“月份”和“温度”之间的显著依赖性。我们可以通过其他例子了解 dcor.ttest 和 cor.test 的区别,例如:

x <- seq(0, 4*pi, pi/20)
y <- cos(x)
qplot(x = x, y = y)
dcor.ttest(x, y)

双变量数据分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值