Lecture 14: Poisson Process I

前言:这节课讲泊松过程定义,泊松过程中的两个随机变量,
number of arrivals given time period, needed time given number of arrivals. 以及泊松过程和伯努利过程的对比。

在这里插入图片描述
在这里插入图片描述

上节课讲了随机过程,随机过程就是随时间发展的随机试验,也可以把随机过程理解成一项实验,这个实验由无限多的步骤组成。
上节课的例子是:伯努利过程
Bernoulli process, which is nothing but the sequence of Bernoulli trials-- an infinite sequence of Bernoulli trials. For example, flipping a coin over and over.
对于伯努利过程这个实验,主要讲了三个随机变量

  1. n次实验中成功的次数
  2. 区间到达时间,interarrival time
  3. k次到达的时间

memoryless解释:
如果n次实验为 X 1 , X 2 , X 3 , . . . , X t , X t + 1 , X t + 2 X_1, X_2, X_3,...,X_t, X_{t+1}, X_{t+2} X1,X2,X3,...,Xt,Xt+1,Xt+2,
X t X_t Xt是小明来到实验现场的时间,假如小明来的条件是有三个连续的head,那么 X t − 2 , X t − 1 , X t X_{t-2}, X_{t-1}, X_{t} Xt2,Xt1,Xt就都是head,这样小明才在t时刻被喊来, X t + 1 X_{t+1} Xt+1开始第一次出现head需要的次数和从 X 1 X_1 X1开始第一次出现head需要的次数是一样的(memoryless),因为小明在 X t X_t Xt时刻的到来是由前几次的结果决定的,并没有对 X t + 1 X_{t+1} Xt+1以及以后时刻产生任何影响。

但如果有人能预知未来,假如小明来的条件是小明来了之后的三次观察是三个连续的head,那么 X t + 1 , X t + 2 , X t + 3 X_{t+1}, X_{t+2}, X_{t+3} Xt+1,Xt+2,Xt+3就都是head,从 X t + 1 X_{t+1} Xt+1开始第一次出现head需要的次数和从 X 1 X_1 X1开始第一次出现head需要的次数是不一样的,因此这是已经不具备memoryless。
在这里插入图片描述
开始泊松过程,首先来两个假设:
假设一:时间同性,在不同时刻,给定相同的时间段,到达次数的分布是相同的。
假设二:无重叠时间段的到达次数是独立的。
我们可以定义:
对于任意的一个非常短的时间段 δ \delta δ,到达的数量是1的概率是 λ δ \lambda\delta λδ
λ \lambda λ也可以理解成单位时间内到达的次数的期望值。看到单位时间就有连续时间的味道了
下面来推导泊松过程
在这里插入图片描述
首先可以通过类比伯努利过程,求得 [ 0 , τ ] [0, \tau] [0,τ]时间内到达次数为N的PMF。
具体推导过程如下图
在这里插入图片描述
[ 0 , τ ] [0, \tau] [0,τ]时间分成n分,然后每一份都是一个伯努利实验,每份实验的到达概率是 p = λ δ p = \lambda\delta p=λδ,这样当n取极限的时候,就是到达率为 λ \lambda λ的连续时间 [ 0 , τ ] [0, \tau] [0,τ]内到达k次的PMF。

期望的求法:
伯努利过程n次实验的期望是 n ∗ p n*p np,因为 p = λ ∗ t n p = \frac{\lambda*t}{n} p=nλt,注意这里 τ \tau τ 用t表示是一样的,所以 E [ N t ] = λ ∗ t E[N_t] = \lambda * t E[Nt]=λt

方差的求法:
伯努利过程n次实验的方差是 n ∗ p ∗ ( 1 − p ) n*p*(1-p) np(1p),因为 p = λ ∗ t n p = \frac{\lambda*t}{n} p=nλt, 注意这里p是小量,所以 V a r [ N t ] = n ∗ p = λ ∗ t Var[N_t] = n*p = \lambda * t Var[Nt]=np=λt
在这里插入图片描述
举个例子
在这里插入图片描述
换一个随机变量, Y k Y_k Yk表示k次到达需要的时间,假设第k次到达发生在 [ t , t + δ ] [t,t+\delta] [t,t+δ]时间段内, 那么 [ 0 , t ] [0,t] [0,t]就有k-1次到达,正好用上泊松分布的公式。得到的新的分布叫erlang分布。
如果k= 1,就是第一次到达需要的时间,是指数分布。
在这里插入图片描述
泊松分布和伯努利分布的总结
在这里插入图片描述
泊松过程的合并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值