前言:这节课讲泊松过程定义,泊松过程中的两个随机变量,
number of arrivals given time period, needed time given number of arrivals. 以及泊松过程和伯努利过程的对比。
上节课讲了随机过程,随机过程就是随时间发展的随机试验,也可以把随机过程理解成一项实验,这个实验由无限多的步骤组成。
上节课的例子是:伯努利过程
Bernoulli process, which is nothing but the sequence of Bernoulli trials-- an infinite sequence of Bernoulli trials. For example, flipping a coin over and over.
对于伯努利过程这个实验,主要讲了三个随机变量
- n次实验中成功的次数
- 区间到达时间,interarrival time
- k次到达的时间
memoryless解释:
如果n次实验为
X
1
,
X
2
,
X
3
,
.
.
.
,
X
t
,
X
t
+
1
,
X
t
+
2
X_1, X_2, X_3,...,X_t, X_{t+1}, X_{t+2}
X1,X2,X3,...,Xt,Xt+1,Xt+2,
X
t
X_t
Xt是小明来到实验现场的时间,假如小明来的条件是有三个连续的head,那么
X
t
−
2
,
X
t
−
1
,
X
t
X_{t-2}, X_{t-1}, X_{t}
Xt−2,Xt−1,Xt就都是head,这样小明才在t时刻被喊来,从
X
t
+
1
X_{t+1}
Xt+1开始第一次出现head需要的次数和从
X
1
X_1
X1开始第一次出现head需要的次数是一样的(memoryless),因为小明在
X
t
X_t
Xt时刻的到来是由前几次的结果决定的,并没有对
X
t
+
1
X_{t+1}
Xt+1以及以后时刻产生任何影响。
但如果有人能预知未来,假如小明来的条件是小明来了之后的三次观察是三个连续的head,那么
X
t
+
1
,
X
t
+
2
,
X
t
+
3
X_{t+1}, X_{t+2}, X_{t+3}
Xt+1,Xt+2,Xt+3就都是head,从
X
t
+
1
X_{t+1}
Xt+1开始第一次出现head需要的次数和从
X
1
X_1
X1开始第一次出现head需要的次数是不一样的,因此这是已经不具备memoryless。
开始泊松过程,首先来两个假设:
假设一:时间同性,在不同时刻,给定相同的时间段,到达次数的分布是相同的。
假设二:无重叠时间段的到达次数是独立的。
我们可以定义:
对于任意的一个非常短的时间段
δ
\delta
δ,到达的数量是1的概率是
λ
δ
\lambda\delta
λδ
λ
\lambda
λ也可以理解成单位时间内到达的次数的期望值。看到单位时间就有连续时间的味道了
下面来推导泊松过程
首先可以通过类比伯努利过程,求得
[
0
,
τ
]
[0, \tau]
[0,τ]时间内到达次数为N的PMF。
具体推导过程如下图
把
[
0
,
τ
]
[0, \tau]
[0,τ]时间分成n分,然后每一份都是一个伯努利实验,每份实验的到达概率是
p
=
λ
δ
p = \lambda\delta
p=λδ,这样当n取极限的时候,就是到达率为
λ
\lambda
λ的连续时间
[
0
,
τ
]
[0, \tau]
[0,τ]内到达k次的PMF。
期望的求法:
伯努利过程n次实验的期望是
n
∗
p
n*p
n∗p,因为
p
=
λ
∗
t
n
p = \frac{\lambda*t}{n}
p=nλ∗t,注意这里
τ
\tau
τ 用t表示是一样的,所以
E
[
N
t
]
=
λ
∗
t
E[N_t] = \lambda * t
E[Nt]=λ∗t
方差的求法:
伯努利过程n次实验的方差是
n
∗
p
∗
(
1
−
p
)
n*p*(1-p)
n∗p∗(1−p),因为
p
=
λ
∗
t
n
p = \frac{\lambda*t}{n}
p=nλ∗t, 注意这里p是小量,所以
V
a
r
[
N
t
]
=
n
∗
p
=
λ
∗
t
Var[N_t] = n*p = \lambda * t
Var[Nt]=n∗p=λ∗t
举个例子
换一个随机变量,
Y
k
Y_k
Yk表示k次到达需要的时间,假设第k次到达发生在
[
t
,
t
+
δ
]
[t,t+\delta]
[t,t+δ]时间段内, 那么
[
0
,
t
]
[0,t]
[0,t]就有k-1次到达,正好用上泊松分布的公式。得到的新的分布叫erlang分布。
如果k= 1,就是第一次到达需要的时间,是指数分布。
泊松分布和伯努利分布的总结
泊松过程的合并