文章目录
Kruskal算法:最小生成树
题目背景故事
你是一名建筑工人,负责在一个城市中建造一座桥。你需要把这座桥连接的两个岸边的点连起来,并且要使得连接的边的权值和最小。
题目描述
给定一张带权的无向图,求出其最小生成树。
输入描述
第一行包含两个整数n和m,分别表示点数和边数。
接下来m行,每行包含三个整数u, v, w,表示一条从点u到点v的有向边,权值为w。
输出描述
输出最小生成树的权值和。
输入样例
4 5
1 2 3
1 3 4
4 2 6
4 3 5
2 3 7
输出样例
14
解题思路
这道题我们可以使用Kruskal算法来解决。Kruskal算法是一种用于求解最小生成树的算法,它的核心思想是将图中所有边按照权值从小到大排序,然后依次加入边,如果加入后不会形成环,就加入这条为了判断一条边是否会形成环,我们可以使用并查集来维护连通性。每次加入一条边时,我们先将两个端点所在的集合合并,然后判断两个端点是否在同一个集合中,如果不是,就加入这条边。
C++代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
struct Edge
{
int u, v, w;
} edges[N];
int p[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i < m; i ++ )
cin >> edges[i].u >> edges[i].v >> edges[i].w;
for (int i = 1; i <= n; i ++ ) p[i] = i;
sort(edges, edges + m, [](Edge a, Edge b){
return a.w < b.w; });
int res = 0;
for (int i = 0; i < m; i ++ )
{
int u = edges[i].u, v = edges[i].v;
int t1 = find(u), t2 = find(v);
if (t1 != t2)
{
p[t1] = t2;
res += edges[i].w;
}
}
cout << res << endl;
return 0;
}
动态规划:最长公共子序列
题目背景故事
你是一名研究生,正在研究两个DNA序列的相似性。你需要找出这两个DNA序列的最长公共子序列,并确定它们的相似度。
题目描述
给定两个字符串A和B,求出它们的最长公共子序列的长度。
输入描述
第一行包含两个字符串A和B。
输出描述
输出最长公共子序列的长度。
输入样例
abcde
abcdf
输出样例
4
解题思路
这道题我们可以使用动态规划来解决。我们可以定义一个二维数组dp[i][j]表示字符串A的前i个字符和字符串B的前j个字符的最长公共子序列的长度。
对于每一个dp[i][j],我们可以由dp[i-1][j]和dp[i][j-1]转移而来,但是如果A[i]==B[j],我们就可以加上dp[i-1][j-1]的值。
状态转移方程如下:
d p [ i ] [ j ] = max ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j]=\max(dp[i-1][j],dp[i][j-1]) dp[i][j]=max(dp[i−1][j],dp[i][j−1])
d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 ( A [ i ] = = B [ j ] ) dp[i][j]=dp[i-1][j-1]+1(A[i]==B[j]) dp[i][j]=dp[i−1][j−1]+1(A[i]==B[j])
C++代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010;
char A[N], B[N];
int dp[N][N];
int main()
{
cin >> A + 1 >> B + 1;
int n = strlen(A + 1), m = strlen(B + 1);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
{
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
if (A[i] == B[j]) dp[i][j] = dp[i-1][j-1] + 1;
}
cout << dp[n][m] << endl;
return 0;
}
动态规划+二分:最小表示法
题目背景故事
你是一名研究生,正在研究两个DNA序列的相似性。你需要找出这两个DNA序列的最长公共子序列,并确定它们的相似度。
题目描述
给定两个字符串A和B,求出它们的最长公共子序列的长度。
输入描述
第一行包含两个字符串A和B。
输出描述
输出最长公共子序列的长度。
输入样例
abcde
abcdf
输出样例
4
解题思路
这道题我们可以使用动态规划来解决。我们可以定义一个二维数组dp[i][j]表示字符串A的