工人是否佩戴安全帽图像识别系统能从繁杂的场景下对对未戴安全帽多个目标同时开展识别分析,识别、记录和预警提醒。工人是否佩戴安全帽图像识别系统若发现违规操作,直接向有关人员推送报警消息记录,协助有关管理者进行安全生产工作,大大提升了安全监督的时效性,减少了人力成本。
2018年,作者Redmon又在YOLOv2的基础上做了一些改进。特征提取部分采用Darknet-53网络结构代替原来的Darknet-19,利用特征金字塔网络结构实现了多尺度检测,分类方法使用逻辑回归代替了softmax,在兼顾实用性的同时保证了目标检测的准确性。
从YOLOv1到YOLOv3,每一代性能的提升都与backbone(骨干网络)的改进密切相关。在YOLOv3中,作者不仅提供了darknet-53,还提供了轻量级的tiny-darknet。如果你想检测精度与速度兼备,可以选择darknet-53作为backbone;如果你想达到更快的检测速度,精度方面可以妥协。那么tiny-darknet是你很好的选择。总之,YOLOv3的灵活性使得它在实际工程中得到很多人的青睐。
工人是否佩戴安全帽图像识别综合主要用途十分广泛。依据施工工地、煤矿作业、电力作业、工厂等相关规定,工人务必戴安全帽保护人身安全,大家应该重视的是,只有保障安全问题才能保障各方面的利益。工人是否佩戴安全帽图像识别系统可以通过样本的训练,算法的优化,适用于不同的场景监管安全帽佩戴问题。
YOLOv3在输出的改进是多标签预测(softmax函数变为logistics分类器)。在YOLOv1中,通常使用softmax函数作为分类器的激活函数,将每个类别的输出转化为概率分布。
然而,对于YOLOv3这样的多标签检测任务,一个目标可能属于多个类别,使用softmax函数会导致多个类别的概率之和超过1,不符合多标签问题的要求。因此,在YOLOv3中,采用了logistic分类器作为分类器的激活函数。
工人是否佩戴安全帽图像识别也可以同时运行其他识别算法,抽烟识别、多色自适应工服识别、高空作业安全带识别、未戴口罩识别、睡岗离岗识别、玩手机打电话识别等功能。工人是否佩戴安全帽图像识别要求的摄像头是200万像素以上普通的安防相机即可,海康大华宇视的网络相机均支持。该系统不用GPU,只需CPU就可以正常运行识别报警提醒。