离散概率分布与期望

本文深入浅出地介绍了概率统计的基本概念,包括离散概率分布、随机变量期望、方差、标准差等,并详细阐述了线性变换、重复独立事件及不同独立事件的期望和方差的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 离散概率分布:随机变量取确定的离散值对应的概率分布,如抛一枚硬币对应的正面和反面的概率,老虎机中不同等级奖项的概率,一般的表示为,随机变量X取x1, x2,...,xn对应的概率为P(X=x1),P(X=x2),...P(X=xn)

2. 随机变量期望:随机变量X期望的长期平均结果,用E(X)或μ表示

计算公式:E(X)=∑xP(X=x)

X的函数f(X)的期望:E(X)=∑f(x)P(X=x)

3. 方差:描述随机变量的离散程度

计算公式:Var(X)=E(X-μ)^2=∑(x-μ)^2*P(X=x)

4. 标准差:描述随机变量的离散程度,随机变量取值与期望的距离

计算公式:σ= √Var(X)

5. 线性变换的期望和方差,如变量Y=aX+b, 则:

E(aX+b)=aE(X)+b

Var(aX+b)=a^2Var(X)

6. 重复的独立事件的期望和方差

某件事的期望为E(X), 先重复n次,求n次的期望和方差

E(X1+X2+...Xn)=nE(X)

Var(X1+X2+...Xn)=nVar(X)

7. 不同独立事件的期望和方差

如果X和Y是两个独立事件,则X和Y变量的和或者差的期望为:

E(X+Y)= E(X)+ E(Y)

E(X-Y)= E(X)- E(Y)

Var(X+Y)= Var(X)+ Var(Y)

Var(X-Y)= Var(X)+ Var(Y)

如果X和Y不是独立事件,则方差公式不成立

8. 不同独立事件线性变化的期望和方差

如果X和Y是两个独立事件,则X和Y变量的和或者差的期望为:

E(aX+bY)= aE(X)+ bE(Y)

E(aX-bY)= aE(X)- bE(Y)

Var(aX+bY)= a^2E(X)+ b^2E(Y)

Var(aX-bY)= a^2E(X)+ b^2E(Y)

如果X和Y不是独立事件,则方差公式不成立

 

《深入浅出统计学》第四章笔记

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值