连通分量

本文介绍了图论中的重要概念——连通分量和强连通分量,详细讲解了如何通过DFS算法求解无向图的连通分量,并阐述了Tarjan算法在求解有向图强连通分量中的应用。此外,还讨论了割点、桥、双联通分支等相关概念,包括点双连通、边双连通及其关系,并给出了求解双联通分量的模板。
摘要由CSDN通过智能技术生成

连通分量:在无向图中,即为连通子图
强连通分量:在有向图中,尽可能多的若干定点组成的子图中,这些顶点都是相互可达的,
           这些顶点组成一个强连通分量
连通解法:对于一个无向图的连通分量,从连通分量的任意一个顶点开始,进行DFS,
          一定能遍历这个连通图的所有顶点,所以,整个图的连通分量数应该等于遍历整个图的次数
Tarjan算法求强联通分量:
定义:DFN【u】:表示dfs中遍历到该节点的次序
           Low【u】:表示以u为树根,u及u以下的树节点所能找到的最小次序
         (Tarjan认为单节点自身就是一个强连通分量,需屏蔽)

 图的割点、桥、双联通分支的基本概念:


[点连通度与边连通度]
      在一个无向图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有点相关联的边以后,
      原图变成多个连通块,就称这个点集为割点集合。
        (一个图的点连通度的定义为:最小割点集中的点数)
         类似的,如果有一个边集合,删除这个边集合后,原图变成多个连通块,就称这个点集为割点集合。
        (一个图的边连通度的定义为:最小割边集中的边数)
     [双连通图、割点、桥]
         如果一个无向连通图的点连通度大于1,则称该图时点双连通的(point biconnected),简称双连通或重连通。
         一个图有割点,当且仅当这个图的点连通度为1,这割点集合的唯一元素被称为割点,又叫关节点(articulation point)。
         如果一个无向连通图的边连通度大于1,则称该图时边双连通的(edge biconnected),简称双连通或重连通。
         一个图有桥,当且仅当这个图的边连通度为1,则割边集的唯一元素被称为桥,又叫关节边(articulation edge)。
      可以看出,点双联通和边双联通的都可以简称为双联通,它们之间有着某种联系的,下文中提到的双联通,均可指点双联通或边双联通
      [双联通分支]
            在图G的所有子图G'中,G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值