YOLOv8目标检测,火灾烟雾数据集整理

最近在做火灾烟雾方面的目标检测,找了一些网上的资源,将自己用过的相关数据集整理出来。有些数据集可能存在一些标注问题。

本文的实验都是基于YOLOv8

1、D-Fire: an image dataset for fire and smoke detection

GitHub地址 D-Fire: an image dataset for fire and smoke detection

  • D-Fire is an image dataset of fire and smoke occurrences designed for machine learning and object detection algorithms with more than 21,000 images.
    D-Fire是一个火灾和烟雾事件的图像数据集,专为机器学习和目标检测算法而设计,拥有超过 21,000 张图像。

在这里插入图片描述

  • 整个数据集没有打标签的图片有9838张,只有fire的图片有1164张,只有smoke的图片有5867张,包含fire和smoke的图片占4658张。整个数据集中fire标签有14692个,smoke标签有11865个。
    在这里插入图片描述
  • All images were annotated according to the YOLO format (normalized coordinates between 0 and 1).
    所有图像均根据YOLO格式(0和1之间的归一化坐标)进行标注。

D-Fire数据集中包括jpg图像数据集和归一化后的txt标注数据集。
使用起来很方便,不需要自己再做预过多的处理,产生细节问题。

  • 基于YOLOv8的实验结果如下。
    在这里插入图片描述

2、Fire and Smoke Tracking and Detection using YOLOv8

GitHub地址 Fire and Smoke Tracking and Detection using YOLOv8

  • This repository contains the code for tracking and detecting fires and smokes in real-time video using YOLOv8.
    仓库包含在实时视频中用YOLOv8跟踪和检测火灾和烟雾的代码。

  • 数据集中的图片是火灾视频的每一帧构成的,图片是连续的。

  • 基于YOLOv8的实验结果如下。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这个数据跑的结果比较好,各项指标如下:
mAP50-95: 0.6487129624371853
mAP50: 0.9269832698953815
mAP75: 0.6268122328620435
FPS: 183.22257161725173

3、fire_detection数据集

GitHub地址fire-smoke-detect-dataset

在这里插入图片描述

作者gengyanlei指出,数据集包含2部分:
1.自己爬取的图像,自己标注
2.他人开源的数据,有的有标注,有的无标注(我给它重新标注)

“怀疑”是不是作者自己标注的问题,导致数据集质量较低。我在YOLOv8中的跑分结果不是很好?还是xml转成txt的处理程序有细节错误?

yolov8.yaml验证结果:
mAP50-95: 0.3595506203014943
mAP50: 0.6709648127470081
mAP75: 0.3525714523955404
FPS: 70.47393270762457

在这里插入图片描述

在这里插入图片描述

4、fire_smoke百度数据集

数据地址火灾烟雾检测-飞桨fire_smoke数据集
在这里插入图片描述

不知道为什么训练结果很迷?(欢迎讨论啊)
mAP值低的离谱,看着就像数据集不正常。然而百度还用这个数据集搞了个百度Paddle智慧城市生态项目,这样我就不知道是谁那边出错了。
心塞……

在这里插入图片描述


整理不易🚀🚀,关注和收藏后拿走📌📌欢迎留言🧐👋📣✨
快来关注我的公众号🔎AdaCoding 和 GitHub🔎 AdaCoding123
在这里插入图片描述

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值