YOLOv8架构详解

本文详细介绍了YOLOv8架构,包括Backbone的特征提取过程,Head中的融合和任务处理部分,以及可能的Neck结构划分。通过对比两种解释,阐述了如何区分和改进YOLOv8的不同模块以提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在视觉深度学习中,通常将模型分为 2~3 个组成部分:backbone、neck(可选) 和 head。

  • Backbone(主干网络)负责从输入图像中提取特征,将图像转化为具有丰富语义信息的特征表示。
  • Neck(颈部,连接部)是一个中间层,用于对来自 backbone 的特征进行融合,以提升模型的性能。
  • Head(任务头)是模型的最后一层,其结构会根据不同的任务而有所不同。例如,在图像分类任务中,我们通常会使用 softmax 分类器作为 Head,而在目标检测任务中,我们则可能会使用边界框回归器和分类器作为 Head。

YOLOv8 架构图

关于下面经典的架构图的简要说明:

  • 图的上面部分为 YOLOv8 架构的概要图(包括 Backbone,Head)。YOLOv8 没有使用Neck 这个概念,但其架构图中 Head 中类似 PANet 功能的部分也可以归为 Neck。
  • 图右中位置 Detail 为各个组件的详细架构示例,另说明了不同模型大小的参数选择。
  • 图左 + 图下部分,以分步的方式列出了完整的数据流。
  • 每个框的右上角的数字为层的编号,可以和后面的示例输出 1 对照看。

可以看出,YOLOv8 Backbone 为 0~9 层,10~21 层为 YOLOv8 Head。
在这里插入图片描述

在这里插入图片描述

YOLOv8 Backbone部分

见图中第 0~9 层。分别为

  • Conv + Conv + C2f
  • Conv + C2f(对齐特征金字塔 P3)
  • Conv + C2f(对齐特征金字塔 P4)
  • Conv + C2f + SPPF(对齐特征金字塔 P5)

YOLOv8 Head部分

Neck和Head结构

第一种解释:

在YOLOv8 的yaml文件中并没有显示地划分出Neck部分,实际上Neck网络结构就是其Head 网络结构中部分的前半部分。

head部分整体图:
在这里插入图片描述

head:

  ###neck###
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  ###########
  
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

yaml配置文件中,注释段落即为Neck结构


第二种解释:

head:

  ###neck###
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  ###########
  
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

yaml配置文件中,注释段落即为Neck结构,即除去检测头其余部分都是Neck部分

分清楚Neck和Head 部分,可以很方便的对YOLOv8不同部分进行改进,实现任务涨点!


整理不易🚀🚀,关注和收藏后拿走📌📌欢迎留言🧐👋📣
欢迎专注我的公众号AdaCoding 和 Github:AdaCoding123
在这里插入图片描述

### YOLOv8 网络架构详解 #### 主要特点和发展历程 YOLOv8由Ultralytics开发,作为最新的目标检测模型版本之一,显著提高了速度、准确性和用户体验。该系列模型的核心理念——“你只看一次”,意味着可以在单次网络传递中完成所有边界框的预测,从而极大地增强了算法效率和实时处理能力[^1]。 #### 架构创新点 相比于之前的YOLO版本,特别是从YOLOv5到YOLOv8的变化尤为明显: - **无锚点机制**:摒弃了传统的基于预定义锚点的目标检测方法,转而采用更灵活高效的无锚点策略,简化了非极大值抑制(NMS)后的处理流程。 - **增强型Neck结构**:继承并优化了YOLOv5中的FPN(Feature Pyramid Network)设计思路,不仅能在不同尺度特征图间共享信息,还进一步加强了跨层连接的效果,有助于捕捉更加丰富的空间语义特性[^2]。 - **改进版Head组件**:作为整个系统的决策单元,新引入的操作如`nn.Upsample`, `Concat` 和 `Detect`使得模型能够更好地综合多源数据,并最终生成高质量的检测结果。具体来说: - `nn.Upsample`: 实现特征图尺寸放大; - `Concat`: 将具有相似分辨率但可能携带不同类型抽象级别的特征向量组合起来; - `Detect`: 定位并分类感兴趣区域内的对象实例[^4]。 ```python import torch.nn as nn class Upsample(nn.Module): def __init__(self, scale_factor=2, mode='nearest'): super(Upsample, self).__init__() self.scale_factor = scale_factor self.mode = mode def forward(self, x): return nn.functional.interpolate(x, scale_factor=self.scale_factor, mode=self.mode) def concat_tensors(tensors_list): """将列表中的张量按通道维度拼接""" return torch.cat(tensors_list, dim=1) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值