【逻辑回归LR算法】 机器学习公式推导计算+详细过程

  • Logistic回归是”广义线性模型“,用于解决分类问题。是在线性回归的基础上加入了非线性映射sigmoid函数

线性回归公式
h θ ( x ) = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_\theta(x) = \theta_0x_0 + \theta_1x_1 + \theta_2x_2 + ... + \theta_nx_n hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

线性回归向量形式
h θ ( x ) = θ T x h_\theta(x) = \theta^Tx hθ(x)=θTx

sigmoid函数

g ( z ) = 1 1 + e − z g(z) = \frac{1}{1 + e^{-z} } g(z)=1+ez1

  • 其中, z = h θ ( x ) = θ T x z = h_\theta(x) = \theta^Tx z=hθ(x)=θTx

g ( z ) = 1 1 + e − θ T x g(z) = \frac{1}{1 + e^{-\theta^Tx } } g(z)=1+eθTx1

逻辑回归损失函数

J ( θ ) = − 1 m ∑ i = 0 m [ y ( i ) l o g h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m} \sum_{i=0} ^ m [y^{(i)}log{h_{\theta} (x ^ {(i)})}+ (1 - y ^ {(i)})log{(1 -h_{\theta} (x ^ {(i)}))}] J(θ)=m1i=0m[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

梯度下降更新 θ \theta θ
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J (\theta) θj:=θjαθjJ(θ)

sigmoid函数求导
g ( x ) = 1 1 + e − x g(x) = \frac{1}{1 + e^{-x } } g(x)=1+ex1

g ′ ( x ) = g ( x ) ( 1 − g ( x ) ) ( 5.8 ) g'(x) = g(x)(1 - g(x)) \quad (5.8) g(x)=g(x)(1g(x))(5.8)

求偏导数推导
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m [ y ( i ) 1 h θ ( x ( i ) ) ∗ ∂ h θ ( x ( i ) ) ∂ θ j − ( 1 − y ( i ) ) ∗ 1 1 − h θ ( x ( i ) ) ∗ ∂ h θ ( x ( i ) ) ∂ θ j ] \frac{\partial J (\theta)}{\partial \theta_j} = -\frac{1}{m} \sum_{i=0} ^ m [y ^ {(i)} \frac{1}{h_\theta(x^{(i)})} * \frac{\partial h_\theta (x^{(i)})}{\partial \theta_j} - (1 - y ^ {(i)}) *\frac{1}{1 - h_\theta(x^{(i)})} * \frac{\partial h_\theta (x^{(i)})}{\partial \theta_j}] θjJ(θ)=m1i=0m[y(i)hθ(x(i))1θjhθ(x(i))(1y(i))1hθ(x(i))1θjhθ(x(i))]

= − 1 m ∑ i = 0 m [ y ( i ) 1 g ( θ T x ( i ) ) − ( 1 − y ( i ) ) 1 1 − g ( θ T x ( i ) ) ] ∗ ∂ g ( θ T x ( i ) ) ∂ θ j = -\frac{1}{m} \sum_{i=0} ^ m [y ^ {(i)} \frac{1}{g(\theta^Tx ^ {(i)})} - (1 - y ^ {(i)}) \frac{1}{1 -g(\theta^Tx ^ {(i)})}] * \frac{\partial g(\theta^Tx ^ {(i)})}{\partial \theta_j} =m1i=0m[y(i)g(θTx(i))1(1y(i))1g(θTx(i))1]θjg(θTx(i))

= − 1 m ∑ i = 0 m [ y ( i ) 1 g ( θ T x ( i ) ) − ( 1 − y ( i ) ) 1 1 − g ( θ T x ( i ) ) ] ∗ g ( θ T x ( i ) ) ( 1 − g ( θ T x ( i ) ) x j ( i ) = -\frac{1}{m} \sum_{i=0} ^ m [y ^ {(i)} \frac{1}{g(\theta^Tx ^ {(i)})} - (1 - y ^ {(i)}) \frac{1}{1 -g(\theta^Tx ^ {(i)})}] * g(\theta^Tx ^ {(i)})(1 - g(\theta^Tx ^ {(i)}) x^{(i)}_j =m1i=0m[y(i)g(θTx(i))1(1y(i))1g(θTx(i))1]g(θTx(i))(1g(θTx(i))xj(i)

= − 1 m ∑ i = 0 m [ y ( i ) ( 1 − g ( θ T x ( i ) ) − ( 1 − y ( i ) ) g ( θ T x ( i ) ) ] x j ( i ) = -\frac{1}{m} \sum_{i=0} ^ m [y ^ {(i)} (1 - g(\theta^Tx ^ {(i)}) - (1 - y ^ {(i)})g(\theta^Tx ^ {(i)})] x^{(i)}_j =m1i=0m[y(i)(1g(θTx(i))(1y(i))g(θTx(i))]xj(i)

= − 1 m ∑ i = 0 m ( y ( i ) − g ( θ T x ( i ) ) ) x j ( i ) = -\frac{1}{m} \sum_{i=0} ^ m (y ^ {(i)} - g(\theta^Tx ^ {(i)})) x^{(i)}_j =m1i=0m(y(i)g(θTx(i)))xj(i)

= 1 m ∑ i = 0 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) = \frac{1}{m} \sum_{i=0} ^ m(h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}_j =m1i=0mhθ(x(i))y(i)xj(i)

欢迎大家交流学习,任何问题都可以留言
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值