文章目录
回归问题:最终得到的是一个结果的是一个数值(比如预测银行会给你贷款多少钱)
分类问题:最终结果就是0或1(比如根据一个人的医学数据来预测他是否得糖尿病)
一、回归模型
研究的对象:回归问题研究具有“相关关系”的变量,比如人的身高和体重具有一定的相关关系,他们就可以用回归模型研究
线性回归
逻辑回归
未摘抄:01回归算法的第六节梯度下降原理 和 第七节梯度下降实例
二、决策树
1.熵与Gini系数
2.构造决策树的原理
3.如何构造决策树
4.信息增益率、评价系数
5.决策树剪枝
6.随机森铃
未摘抄:第二章决策树与随机森铃 第8节案例决策树参数
第四章 xgboost
xgboost是多棵树的集成,但它不是多棵树的和,它要求每加一棵树都能使结果得到一个提升
未摘抄:第四章xgboost的“第五节 xgboost的安装”和“第六节xgboost实战演示”和“第七节Adaboost基本原理”
第三章 贝叶斯算法
未摘抄:第三章贝叶斯算法的第五节“贝叶斯实现拼写检查”
第五章 支持向量SVM
支持向量SVM
软间隔支持向量机
核函数变换
第六章 ARIMA模型
关于数据的平稳性:
差分法确定ARIMA的参数d
ACF和PACF确定ARIMA的参数p和q
未摘抄:第六章ARIMA的第四节"建立ARIMA模型"和第五节"参数选择"
第七章 k近邻和交叉验证
第八章 神经网络算法
损失函数–SVM损失函数
损失函数–Softmax损失函数
反向传播
神经网络
参数设置
未摘抄:第八章"神经网络架构"第四节"感受神经网络的强大""
第九章 PCA
第十章 SVD
第十一章 聚类算法
K-means聚类算法
DBscan聚类算法
第十二章 推荐系统
基于用户的协同过滤
基于物品的协同过滤
隐语义模型
未摘抄:推荐系统之召回与精排
第十三章 Word2Vec