机器学习公式推导


回归问题:最终得到的是一个结果的是一个数值(比如预测银行会给你贷款多少钱)
分类问题:最终结果就是0或1(比如根据一个人的医学数据来预测他是否得糖尿病)



一、回归模型

研究的对象:回归问题研究具有“相关关系”的变量,比如人的身高和体重具有一定的相关关系,他们就可以用回归模型研究
线性回归
在这里插入图片描述
在这里插入图片描述

逻辑回归在这里插入图片描述

未摘抄:01回归算法的第六节梯度下降原理 和 第七节梯度下降实例



二、决策树

在这里插入图片描述
在这里插入图片描述
1.熵与Gini系数
在这里插入图片描述
在这里插入图片描述
2.构造决策树的原理
在这里插入图片描述
3.如何构造决策树
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4.信息增益率、评价系数
在这里插入图片描述
5.决策树剪枝
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
6.随机森铃
在这里插入图片描述
未摘抄:第二章决策树与随机森铃 第8节案例决策树参数



第四章 xgboost

在这里插入图片描述
xgboost是多棵树的集成,但它不是多棵树的和,它要求每加一棵树都能使结果得到一个提升
在这里插入图片描述
在这里插入图片描述

未摘抄:第四章xgboost的“第五节 xgboost的安装”和“第六节xgboost实战演示”和“第七节Adaboost基本原理”



第三章 贝叶斯算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
未摘抄:第三章贝叶斯算法的第五节“贝叶斯实现拼写检查”



第五章 支持向量SVM

支持向量SVM
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
软间隔支持向量机

在这里插入图片描述
在这里插入图片描述
核函数变换在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述



第六章 ARIMA模型

在这里插入图片描述
关于数据的平稳性:
在这里插入图片描述
在这里插入图片描述
差分法确定ARIMA的参数d
在这里插入图片描述
ACF和PACF确定ARIMA的参数p和q
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
未摘抄:第六章ARIMA的第四节"建立ARIMA模型"和第五节"参数选择"



第七章 k近邻和交叉验证

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述



第八章 神经网络算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
损失函数–SVM损失函数
在这里插入图片描述
损失函数–Softmax损失函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
反向传播
在这里插入图片描述
神经网络
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
参数设置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

未摘抄:第八章"神经网络架构"第四节"感受神经网络的强大""



第九章 PCA

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述



第十章 SVD

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述



第十一章 聚类算法

K-means聚类算法
在这里插入图片描述
在这里插入图片描述
DBscan聚类算法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述



第十二章 推荐系统

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
基于用户的协同过滤
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
基于物品的协同过滤
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
隐语义模型
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
未摘抄:推荐系统之召回与精排



第十三章 Word2Vec

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackTurn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值