LangChain 非常强大的一点就是封装了非常多强大的工具可以直接使用。降低了使用者的学习成本。比如数据网页爬取

在其官方文档-网页爬取中,也有非常好的示例。

应用场景
  • 信息爬取。
  • RAG 信息检索。
实践应用
需求说明
  • 从 ceshiren 网站中获取每个帖子的名称以及其对应的url信息。
实现思路

结合LangChain实现网页数据爬取_加载数据

对应源码
# 定义大模型
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")

# 定义提取方法
def extract(content: str, schema: dict):
    from langchain.chains import create_extraction_chain
    return create_extraction_chain(schema=schema, llm=llm).invoke(content)

import pprint
from langchain_text_splitters import RecursiveCharacterTextSplitter
def scrape_with_playwright(urls, schema):
    # 加载数据
    loader = AsyncChromiumLoader(urls)
    docs = loader.load()
    # 数据转换
    bs_transformer = BeautifulSoupTransformer()
    # 提取其中的span标签
    docs_transformed = bs_transformer.transform_documents(
        docs, tags_to_extract=["span"]
    )
    # 数据切分
    splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=1000, chunk_overlap=0)
    splits = splitter.split_documents(docs_transformed)
    # 因为数据量太大,输入第一片数据使用,传入使用的架构
    extracted_content = extract(schema=schema, content=splits[0].page_content)
    pprint.pprint(extracted_content)
    return extracted_content

urls = ["https://ceshiren.com/"]
schema = {
    "properties": {
        "title": {"type": "string"},
        "url": {"type": "string"},
    },
    "required": ["title", "url"],
}
extracted_content = scrape_with_playwright(urls, schema=schema)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
总结
  1. 了解网页爬取的实现思路以及相关技术。
  2. 通过LangChain实现爬取测试人网页的标题和url。