局部子空间相似度(Local Subspace Affinity, LSA)
引言
局部子空间相似度(LSA)是一种在子空间聚类和模式识别领域中用于测量数据点之间局部相似性的方法。
LSA假设高维数据点分布在多个低维子空间上,通过计算每个数据点在局部邻域内的子空间表示,来衡量数据点之间的关联程度。
这种方法特别适用于处理具有复杂结构和噪声的数据集。
基本概念
在LSA中,每个数据点
的局部子空间表示由其
个最近邻点的线性组合给出。这可以通过求解以下优化问题来实现:

其中:
是待表示的数据点。
是
的
个最近邻点的集合。
是
表示为
的线性组合的系数。
是欧几里得范数。
构建相似度矩阵
一旦得到所有数据点的表示系数
,就可以构建相似度矩阵
,其中
表示
和
之间的相似度。相似度通常定义为:

对于非对称的情况,有时也采用对称化的方法,例如:

谱聚类
得到相似度矩阵
后,接下来的步骤通常是应用谱聚类技术来识别数据点所属的子空间。
谱聚类通过分析
的拉普拉斯矩阵
的特征向量来实现。拉普拉斯矩阵
定义为:

其中
是对角矩阵,其中
,称为度矩阵。
谱聚类的关键步骤包括:
- 计算
的特征向量。 - 使用
-means算法对特征向量进行聚类,其中
是子空间的数量。
目标公式与解释
LSA的目标公式主要体现在局部子空间表示的求解中:

:这一项衡量了
与它在局部邻域内的线性组合之间的距离,目标是最小化这种距离,以便得到准确的局部子空间表示。
:这是一个归一化约束,确保
可以被其邻域内的点完全表示。
:系数非负约束,保证
的表示是其邻域内点的非负线性组合。
结论
局部子空间相似度(LSA)是一种有效的子空间聚类方法,它通过计算每个数据点在其局部邻域内的子空间表示,来构建数据点之间的相似度矩阵。
LSA能够捕捉数据的局部结构,即使在数据点分布复杂且存在噪声的情况下,也能准确地识别出数据点所属的子空间。
通过与谱聚类技术的结合,LSA能够在多种应用中实现高效的数据分析和模式识别,如图像分析、生物信息学和信号处理等领域。
1万+

被折叠的 条评论
为什么被折叠?



