局部子空间相似度(Local Subspace Affinity, LSA)
引言

局部子空间相似度(LSA)是一种在子空间聚类和模式识别领域中用于测量数据点之间局部相似性的方法

LSA假设高维数据点分布在多个低维子空间上,通过计算每个数据点在局部邻域内的子空间表示,来衡量数据点之间的关联程度

这种方法特别适用于处理具有复杂结构和噪声的数据集。

基本概念

在LSA中,每个数据点局部子空间相似度(Local Subspace Affinity, LSA)_支持向量机的局部子空间表示由其局部子空间相似度(Local Subspace Affinity, LSA)_ci_02个最近邻点的线性组合给出。这可以通过求解以下优化问题来实现:

局部子空间相似度(Local Subspace Affinity, LSA)_ci_03

其中:

  • 局部子空间相似度(Local Subspace Affinity, LSA)_相似度_04待表示的数据点。
  • 局部子空间相似度(Local Subspace Affinity, LSA)_机器学习_05局部子空间相似度(Local Subspace Affinity, LSA)_相似度_04局部子空间相似度(Local Subspace Affinity, LSA)_相似度_07最近邻点的集合。
  • 局部子空间相似度(Local Subspace Affinity, LSA)_ci_08局部子空间相似度(Local Subspace Affinity, LSA)_相似度_04表示为局部子空间相似度(Local Subspace Affinity, LSA)_机器学习_10线性组合的系数。
  • 局部子空间相似度(Local Subspace Affinity, LSA)_人工智能_11欧几里得范数。
构建相似度矩阵

一旦得到所有数据点的表示系数局部子空间相似度(Local Subspace Affinity, LSA)_人工智能_12,就可以构建相似度矩阵局部子空间相似度(Local Subspace Affinity, LSA)_机器学习_13,其中局部子空间相似度(Local Subspace Affinity, LSA)_ci_14表示局部子空间相似度(Local Subspace Affinity, LSA)_支持向量机局部子空间相似度(Local Subspace Affinity, LSA)_相似度_16之间的相似度。相似度通常定义为:

局部子空间相似度(Local Subspace Affinity, LSA)_相似度_17

对于非对称的情况,有时也采用对称化的方法,例如:

局部子空间相似度(Local Subspace Affinity, LSA)_机器学习_18

谱聚类

得到相似度矩阵局部子空间相似度(Local Subspace Affinity, LSA)_机器学习_13后,接下来的步骤通常是应用谱聚类技术来识别数据点所属的子空间。

谱聚类通过分析局部子空间相似度(Local Subspace Affinity, LSA)_机器学习_13拉普拉斯矩阵局部子空间相似度(Local Subspace Affinity, LSA)_支持向量机_21的特征向量来实现。拉普拉斯矩阵局部子空间相似度(Local Subspace Affinity, LSA)_支持向量机_21定义为:

局部子空间相似度(Local Subspace Affinity, LSA)_人工智能_23

其中局部子空间相似度(Local Subspace Affinity, LSA)_ci_24对角矩阵,其中局部子空间相似度(Local Subspace Affinity, LSA)_支持向量机_25,称为度矩阵。

谱聚类的关键步骤包括:

  1. 计算局部子空间相似度(Local Subspace Affinity, LSA)_人工智能_26特征向量。
  2. 使用局部子空间相似度(Local Subspace Affinity, LSA)_相似度_07-means算法对特征向量进行聚类,其中局部子空间相似度(Local Subspace Affinity, LSA)_相似度_07是子空间的数量。
目标公式与解释

LSA的目标公式主要体现在局部子空间表示的求解中:

局部子空间相似度(Local Subspace Affinity, LSA)_ci_03

  • 局部子空间相似度(Local Subspace Affinity, LSA)_ci_30:这一项衡量了局部子空间相似度(Local Subspace Affinity, LSA)_相似度_04与它在局部邻域内的线性组合之间的距离,目标是最小化这种距离,以便得到准确的局部子空间表示。
  • 局部子空间相似度(Local Subspace Affinity, LSA)_人工智能_32:这是一个归一化约束,确保局部子空间相似度(Local Subspace Affinity, LSA)_相似度_04可以被其邻域内的点完全表示。
  • 局部子空间相似度(Local Subspace Affinity, LSA)_ci_34系数非负约束,保证局部子空间相似度(Local Subspace Affinity, LSA)_相似度_04的表示是其邻域内点的非负线性组合。
结论

局部子空间相似度(LSA)是一种有效的子空间聚类方法,它通过计算每个数据点在其局部邻域内的子空间表示,来构建数据点之间的相似度矩阵。

LSA能够捕捉数据的局部结构,即使在数据点分布复杂且存在噪声的情况下,也能准确地识别出数据点所属的子空间。

通过与谱聚类技术的结合,LSA能够在多种应用中实现高效的数据分析和模式识别,如图像分析、生物信息学和信号处理等领域。