数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标

变换流程:

将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标,需要遵循一定的转换方法和步骤。以下是具体的转换流程:

确定数字滤波器的指标:需要明确数字低通滤波器的通带边界频率ωp、通带最大衰减ap、阻带截止频率ωs和阻带最小衰减as。
边界频率的转换:在转换过程中,主要是边界频率ωp和ωs的转换,而通带和阻带的衰减指标ap和as保持不变。边界频率的转换可以通过脉冲响应不变法或双线性变换法来实现。
脉冲响应不变法:如果采用脉冲响应不变法,边界频率的转换关系为直接相等,即数字滤波器的ωp和ωs直接作为模拟滤波器的频率指标。
双线性变换法:如果采用双线性变换法,则需要根据特定的变换公式来调整边界频率,这种方法在频率较高时能更好地保持频率响应的形状。
设计模拟滤波器的系统函数:通过上述频率转换得到低通滤波器的设计指标后,设计模拟滤波器的系统函数H(s)。这一步通常涉及到选择合适的模拟滤波器类型(如巴特沃斯、切比雪夫等)并计算其参数。
复频率转换:最后,通过复频率转换,得到模拟滤波器的系统函数。这一步确保了模拟滤波器的性能能够满足数字滤波器的设计要求

需要注意的是,在实际操作中,可能还需要考虑采样周期T的选择,因为它会影响到模拟滤波器参数指标的确定。此外,设计过程中可能需要借助现有的模拟滤波器设计工具或公式来辅助完成这一转换过程。

S域如何变换到Z域:

S域到Z域的变换通常涉及到将连续时间系统的传递函数转换为离散时间系统的传递函数。以下是几种常用的变换方法:

**前向差分法:**这是一种近似方法,通过将连续函数在某一点的导数用差分来近似。例如,一阶导数可以近似为 ([y(k+1) - y(k)]/T),二阶导数可以近似为 [y(k+2)−2y(k+1)+y(k)]/T2[y(k+2)−2y(k+1)+y(k)]/T2 等。这种方法可以推广到任意阶次的导数。然后通过对差分方程进行Z变换,可以得到Z域的传递函数。
**拉普拉斯变换法:**在连续域中,可以使用拉普拉斯变换来分析系统的稳定性和动态响应。在设计数字控制器时,需要将连续模型离散化,即从S域变换到Z域。这个过程中,通常会使用特定的采样周期T来进行转换。
**Matlab工具:**在Matlab中,可以使用c2d函数来将连续时间系统的传递函数转换为离散时间系统的传递函数。c2d函数接受连续时间系统的传递函数、采样时间和转换方法作为输入参数,输出对应的Z域传递函数。
**直接替换法:**在某些情况下,可以直接将S域传递函数中的s替换为z的表达式来计算Z域传递函数。这种方法适用于一些简单的传递函数,但并不总是适用。
**零极点匹配法:**这种方法涉及到将S域传递函数的零点和极点映射到Z域。这通常需要对S域传递函数的形式有一定的了解,并且能够找到相应的Z域匹配形式。
**数值积分法:**对于更复杂的系统,可能需要使用数值积分方法来近似S域到Z域的转换。这通常涉及到对连续系统的响应进行数值积分,然后使用Z变换来得到离散系统的响应。

总的来说,在实际操作中,选择哪种方法取决于具体的系统特性和设计要求。通常,前向差分法和Matlab工具是较为常见和方便的选择。在进行S域到Z域的变换时,需要注意保持系统的稳定性和动态性能,确保离散化后的系统能够准确地反映连续系统的行为。

零极点匹配法是一种将S域(复频域)传递函数的零点和极点映射到Z域(Z变换域)的方法。这种方法通常用于离散时间系统的设计,特别是在数字信号处理和数字控制系统中。以下是具体的步骤:

了解S域传递函数的形式:需要对连续时间系统的传递函数有一定的了解,包括它的零点和极点的位置。
选择采样频率:根据系统的性能要求选择合适的采样频率,并设计抗混叠前置滤波器以确保信号在采样过程中不会发生畸变。
映射规则:具体映射规则如下:

当零极点位于S平面的虚轴上(s=0),即在jω轴上时,它们映射到Z平面的单位圆周上。
当零极点位于S平面的右半平面(s>0)时,它们映射到Z平面的单位圆外。
当零极点位于S平面的左半平面(s<0)时,它们映射到Z平面的单位圆内。

考虑ZOH的相位特性:在进行映射时,还需要考虑零阶保持(Zero-Order Hold, ZOH)的相位特性,以确保转换过程中系统的稳定性和性能。
保证稳定性和精度:零极点匹配法可以保证连续系统的稳定性和精度,但需要注意的是,这种方法可能会引入频率畸变。
适用性:零极点匹配法适用于给定连续传递函数为零极点形式的情况,特别是当分子少的零点可以用z域的-1点来凑的情况。
与其他方法的关系:零极点匹配法与Tustin变换有相似之处,但它更侧重于零极点的精确匹配,而不是频率响应的精确匹配。

总的来说,零极点匹配法是一种有效的S域到Z域的变换方法,尤其适用于那些已经有了明确零极点形式的连续系统。通过这种方法,可以确保离散化后的系统保持良好的稳定性和动态性能。

拉普拉斯变换:直角坐标系

参考:
https://blog.csdn.net/jiahonghao2002/article/details/131165128?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171377315416800215085481%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=171377315416800215085481&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2blogsobaiduend~default-1-131165128-null-null.nonecase&utm_term=z%E5%8F%98%E6%8D%A2%E4%B8%8E%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%8F%98%E6%8D%A2&spm=1018.2226.3001.4450
拉普拉斯衰减因子的作用主要是使函数满足绝对可积的条件,从而可以进行拉普拉斯变换。

拉普拉斯变换是一种数学工具,它允许工程师和数学家将微分方程转换为代数方程,从而更容易解决。在许多实际情况下,系统的行为随时间增长或减少,而不像傅里叶变换所假设的那样是周期性的或在无限时间内持续的。拉普拉斯衰减因子的形式是 e^(−σt),其中 σ是一个实数,它可以是正的、负的或零。σ是一个实数,它可以是正的、负的或零。当σ>0 时,这个因子会随着时间的增长而衰减,这有助于确保函数在无穷远处趋于零,满足了绝对可积的条件。具体来说:

扩展傅里叶变换的应用范围:傅里叶变换适用于处理周期函数或在无限时间内持续的非周期函数。然而,对于在时间轴上快速增长或快速衰减的函数,傅里叶变换可能不适用。通过引入衰减因子,拉普拉斯变换可以处理这类函数,因此它是傅里叶变换的一个扩展。
分析系统的稳定性:在控制系统和工程领域,拉普拉斯变换被用来分析系统的稳定性和动态响应。通过将时间域的微分方程转换为复频域的代数方程,可以更容易地分析系统的长期行为。
求解微分方程:拉普拉斯变换可以将难以直接求解的时间域微分方程转换为更易于处理的频域代数方程。这对于电气工程、控制理论和物理学中的许多问题都是至关重要的。
物理意义的解释:在信号处理中,拉普拉斯变换的物理意义可以理解为信号的复指数信号响应在频域的表示。这意味着它可以提供关于系统如何响应不同频率复指数输入的信息。

总的来说,拉普拉斯衰减因子的引入使得拉普拉斯变换成为了一个强大的工具,它不仅扩展了傅里叶变换的应用范围,还为分析和设计线性时不变系统提供了极大的便利。

两个不同的信号可能对应一个相同的拉普拉斯变换,以下是一些可能导致这种情况的原因:

收敛域的差异:拉普拉斯变换包含一个非常重要的概念,即收敛域(Region of Convergence, ROC)。两个不同的信号可能在形式上有不同的行为表现,但它们的拉普拉斯变换表达式在数学上可以相同,只是它们的ROC不同。这意味着同一个拉普拉斯变换表达式在不同的s值(复频域变量)范围内可能对应不同的信号。
信号形式的不同:如果两个信号在时间域内表现形式不同,比如一个信号是另一个信号的延时或者幅度缩放版本,它们仍然可能有相同的拉普拉斯变换形式。这是因为拉普拉斯变换不仅关注信号的形式,还关注信号的s域表达,其中可以包含时间延迟和幅度缩放的信息。
信号的叠加:在信号处理中,经常会将信号分解成基本成分的叠加。由于拉普拉斯变换是线性的,不同信号的叠加可以得到相同的拉普拉斯变换结果。例如,若两个信号分别对应于某个拉普拉斯变换的实部和虚部,那么这两个信号的叠加可能产生与原来相同的拉普拉斯变换。
数学上的多值函数:正如在许多数学领域中存在的情况,一个函数可能是多值的。虽然不常见,但理论上可能存在多个时域信号对应到同一个拉普拉斯变换表达式的情形。这通常是因为数学表达不足以完全捕获信号的所有特性,因此需要额外的信息来唯一确定原始信号。

综上所述,即使两个信号在时间域内表现不同,它们也可能在复频域内有相同的拉普拉斯变换表示。分析具体问题时,通常需要结合ROC和其他信号属性来准确判断原信号的性质。

拉普拉斯变换的存在性与收敛域有着直接的关系。意味着函数拉普拉斯变换在收敛域外不存在,具体分析如下:

收敛域的定义:收敛域是指使得拉普拉斯变换存在的所有复数s的集合。换句话说,收敛域是信号拉普拉斯变换在复平面上的一个区域,在这个区域内,变换后的表达式有意义,即积分存在且有限。
存在性的条件:拉普拉斯变换的存在性要求信号必须是绝对可积的,这意味着信号必须满足一定的条件才能进行拉普拉斯变换。这些条件通常与信号的增长速度和振荡行为有关。如果一个信号增长得太快或振荡得太剧烈,那么它的拉普拉斯变换可能不存在。
收敛域与信号特性:对于不同类型的信号,其拉普拉斯变换的收敛域也会有所不同。例如,对于因果信号(即时间小于0时值为0的信号),其收敛域通常是最右边极点的右半平面;而对于反因果信号(即时间大于0时值为0的信号),其收敛域通常是最左边极点的左半平面。
收敛域与极点位置:如果信号的拉普拉斯变换是一个有理函数,那么它的收敛域将受到极点位置的限制。具体来说,收敛域位于所有极点中实部最大(对于因果信号)或最小(对于反因果信号)的极点的一侧。
实际应用中的考虑:在实际的工程和物理问题中,我们通常需要知道拉普拉斯变换的收敛域,因为它决定了我们可以使用哪些复频域分析方法。例如,如果一个系统的传递函数的拉普拉斯变换不在收敛域内,那么该系统的稳定性就无从谈起。

总的来说,拉普拉斯变换的存在性是由信号本身的性质决定的,而收敛域则是这些性质的数学表征。了解和确定一个信号的收敛域是进行拉普拉斯变换和进一步分析的关键步骤。

s = α + jw,双边拉式变换默认-∞为0,单边拉普拉斯变换 默认 某个起始时刻为0,起始时刻之前也为0,通常把起始时刻定义为原点,也就是因果信号。通常所说的拉氏变换指的是单边拉氏变换。
双边拉氏变换–单边信号:
因果信号的收敛域:α > β
反因果信号的收敛域:α < β
双边拉氏变换-- 双边信号:
可以看作 因果信号 + 反因果信号
因此,收敛域为 因果信号收敛于 + 反因果信号收敛域 公共交集的部分 带状区域

对于双边拉普拉斯变换,必须考虑收敛于才能求出唯一的原函数。不同的信号,可以有相同的拉普拉斯变换的公式,但是收敛域不同。
对于单边拉氏变换,则不需考虑收敛于,有唯一与其对应的拉普拉斯变换后的公式

单边拉氏变换和傅里叶变换的关系:
1、若收敛域 α > β ,β < 0 ,那么收敛域包含了虚轴,因此 当 α = 0时,也就是 s = iw时,F(iw) = F(S)|s = iw
2、若收敛域 α > β ,β = 0 ,那么收敛域刚好在虚轴上,因此 当 α = 0 时的情况不一定,需要求 α 无限趋近于0的极限时, F(iw + α )
3、若收敛域 α > β ,β > 0 ,那么收敛域不包含虚轴,因此不存在。

Z变换:极坐标

参考:
https://blog.csdn.net/weixin_44378835/article/details/115033263?ops_request_misc=&request_id=&biz_id=102&utm_term=Z%E5%8F%98%E6%8D%A2%E7%9A%84%E6%94%B6%E6%95%9B%E5%9F%9F&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-2-115033263.nonecase&spm=1018.2226.3001.4187

双边Z变换必须标明收敛域,可唯一确定原函数,单边Z变换不用标即可唯一确定原函数。
1、有限长序列的双边Z变换:收敛域为整个Z平面
2、因果序列的双边Z变换:某一个圆外,大于某一极半径
3、反因果序列双边Z变换:某一个圆内,小于某一极半径
4、因果序列 + 反因果序列 :某一个圆外 + 某一个圆内 的交集部分,有大小关系。带状区域

因果序列的双边Z变换 = 单边Z变换 一般单边Z变换 从0开始。

Z变换就是由拉氏变换的直角坐标,变换为了极坐标

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值