【剑指offer】面试题29.顺时针打印矩阵

本文详细解析了一种螺旋遍历二维矩阵的算法实现,通过将矩阵视为由多个圈层构成,每次循环打印一个圈层,实现了从左至右、从上至下、从右至左、从下至上四个方向的遍历。适用于C++编程环境,适用于面试及算法竞赛。
摘要由CSDN通过智能技术生成

2020.7.9更新

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        vector<int> ans;
        if (matrix.empty()) return ans;//matrix为空时特判
        int rows = matrix.size();
        int columns = matrix[0].size();
        int start = 0;
        while(rows > start * 2 && columns > start * 2) {
            PrintNumber(ans,matrix, rows, columns, start);//打印一圈
            start++;
        }
        return ans;
    }
    void PrintNumber(vector<int>& _ans, vector<vector<int>>& matrix, int rows, int columns,int start) {
        int endX = rows - 1 - start;
        int endY = columns - 1 - start;

        //以下部分画图理解
        //从左向右输出一行
        for (int i = start; i <= endY; i++) {
            _ans.push_back(matrix[start][i]);
        }

        //从上往下输出一行——行数多于start,才打印
        if (endX > start) {
            for (int i = start + 1; i <= endX; i++) {
                _ans.push_back(matrix[i][endY]);
            }
        }
        //从右往左输出一行——行数多于start,且列数多于start
        if (endY > start && endX > start) {
            for (int i = endY-1; i >= start; i--) {
                _ans.push_back(matrix[endX][i]);
            }
        }

        //从下往上输出一行——行数比start多2行,为什么多2行是+1,可以画图理解
        if (endY > start  && endX > start + 1) {
            for (int i = endX-1; i > start; i--) {
                _ans.push_back(matrix[i][start]);
            }
        }
    }
};

解题思路

参考自剑指offer书籍
1、把矩阵看成由若干个方向的圈组成,每次循环打印一个圈,打印圈从(i,i)点出发,直到循环结束,循环结束条件是什么呢?我们可以发现最后打印的圈的起点的i*2<row和col,因此可使用此条件作为循环结束条件
2、对于打印的每一圈,可以分为四种情况,对四种情况进行依次打印即可

代码

class Solution {
public:
	vector<int> spiralOrder(vector<vector<int>>& matrix) {
		
	
		//存储结果
		vector<int> result;
		//特判
		if (matrix.size()==0)
		{
			return result;
		}
        //打印每一圈
		int row = matrix.size();
		int col = matrix[0].size();
		int start = 0;
		while (row > start * 2 && col > start * 2)//循环结束条件
		{
			//输出一圈
			//该圈起点的对立位置
			int endX = row - 1 - start;
			int endY = col - 1 - start;
			//先输出从左到右
			for (int i = start; i <= endY; i++)
			{
				result.push_back(matrix[start][i]);
			}
			//如果存在从上到下
			if (start < endX)
			{
				for (int i = start + 1; i <= endX; i++)
				{
					result.push_back(matrix[i][endY]);
				}
			}
			//如果存在从右到左
			if (start < endX && start < endY)
			{
				for (int i = endY - 1; i >= start; i--)
				{
					result.push_back(matrix[endX][i]);
				}
			}
			//如果存在从上到下
			if (start < endX - 1 && start < endY)
			{
				for (int i = endX - 1; i > start; i--)
				{
					result.push_back(matrix[i][start]);
				}
			}
			//start增加
			start++;
		}
		return result;

	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值