全景图像拼接

提示:文章用于学习记录


前言

图像拼接技术旨在将两张或多张存在重叠区域的图像,拼接成一幅无明显缝合线的全景图像。
参考【Computer Vision实战】一、使用OpenCV进行图像全景拼接(基于Python3)
【视频处理】视频拼接&视频缝合手把手教你


一、效果展示

ImageA
ImageA
在这里插入图片描述
在这里插入图片描述

二、算法步骤

  1. 图像预处理:对于每个输入图像,进行预处理操作,如图像去噪、图像校正等。这些操作有助于提高拼接的质量;
  2. 特征提取:使用特征提取算法(如SIFT、SURF或ORB)在每个输入图像中检测关键点,并计算每个关键点的描述子。这些描述子是用来描述关键点周围图像区域的向量;
  3. 特征匹配:通过比较两幅图像的特征描述子,使用匹配算法(如最近邻匹配、最佳邻域匹配或RANSAC)来找到在两幅图像之间匹配的关键点对;
  4. 图像配准:使用匹配的关键点对进行图像配准,即将不同图像的对应区域对齐。常用的配准方法包括仿射变换和透视变换;
  5. 图像融合:将配准后的图像进行融合,生成全景图像。常见的融合方法包括平均融合、加权融合和多重分辨率融合;
  6. 全景图像后处理:对生成的全景图像进行后处理,如色彩校正、去除拼接痕迹等,以进一步提升拼接结果的质量。

三、代码编写

3.1 Panorama.py

该代码段是一个名为 Stitcher 的类,用于图像拼接;
在类的初始化方法__init__()中,判断是否使用的是OpenCV的版本3.x或更高版本;
首先通过 imutils.is_cv3() 是一个imutils库中的函数调用,确定是否使用的是 OpenCV 3.X 版本或更高版本,并将结果保存在 self.isv3 变量中。
is_cv3() 函数用于检查 OpenCV 的版本,如果传入参数 or_better=True,则表示检查是否为 OpenCV 3.X 或更高版本。
通过设置 self.isv3 的值,后续的代码可以根据 OpenCV 的版本进行不同的处理,以确保代码在不同版本的 OpenCV 上能够正常运行。
# 导入必要的包
import numpy as np
import imutils
import cv2

class Stitcher:
    def __init__(self):
        # 确定是否使用的是OpenCV v3.X
        self.isv3 = imutils.is_cv3(or_better=True)

这段代码是一个类方法 stitch,用于拼接两个图像成为全景图像,接受以下参数:
images:包含两个输入图像的元组(imageA, imageB);
ratio:特征匹配时的匹配比例阈值,默认为 0.75;
reprojThresh:RANSAC 过程中的重投影误差阈值,默认为 4.0;
showMatches:一个布尔值,指示是否在输出中包含匹配的可视化结果,默认为 False;

解包 images 元组,将第二个图像(imageB)赋值给 imageB,第一个图像(imageA)赋值给 imageA;
调用类中的 detectAndDescribe 方法,对图像 imageA 进行特征检测和描述子提取,返回关键点 (kpsA) 和特征描述子 (featuresA);
同样,对图像 imageB 进行特征检测和描述子提取,返回关键点 (kpsB) 和特征描述子 (featuresB)。

调用类中的 matchKeypoints 方法,对两幅图像的特征进行匹配,返回匹配结果 (M);参数包括两幅图像的关键点、特征描述子,以及匹配比例阈值和重投影误差阈值。

如果匹配结果 M 为空(即没有足够的匹配关键点来创建全景图像),则返回 None,表示拼接失败。

解包匹配结果 M,得到匹配的关键点对 (matches)、透视变换矩阵 (H) 和匹配状态 (status)。
使用透视变换矩阵 H 对图像 imageA 进行透视变换,生成拼接后的图像 result。
目标图像的大小是将 imageA 和 imageB 的宽度相加,高度保持不变
将图像 imageB 复制到拼接图像 result 的对应位置,实现图像的拼接;这里将 imageB 复制到 result 的左上角,覆盖了部分 imageA。

如果 showMatches 参数为 True,即需要显示匹配的可视化结果。

调用类中的 drawMatches 方法,用于绘制匹配关键点的可视化结果;参数包括两幅图像、关键点、匹配关键点对和匹配状态。

返回拼接后的图像 result 和匹配可视化结果 vis 的元组。

返回拼接后的图像 result,表示拼接成功。
这段代码的主要功能是将两幅输入图像进行特征提取、特征匹配和图像拼接,生成全景图像。如果指定了 showMatches 参数为 True,则还会返回匹配关键点的可视化结果。
    def stitch(self, images, ratio=0.75, reprojThresh=4.0,
               showMatches=False):
        # unpack the images, then detect keypoints and extract
        # local invariant descriptors from them
        (imageB, imageA) = images
        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)
        # match features between the two images
        M = self.matchKeypoints(kpsA, kpsB,
                                featuresA, featuresB, ratio, reprojThresh)
        # if the match is None, then there aren't enough matched
        # keypoints to create a panorama
        if M is None:
            return None

        # otherwise, apply a perspective warp to stitch the images
        # together
        (matches, H, status) = M
        result = cv2.warpPerspective(imageA, H,
                                     (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
        # check to see if the keypoint matches should be visualized
        if showMatches:
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
                                   status)
            # return a tuple of the stitched image and the
            # visualization——
            return (result, vis)
        # return the stitched image
        return result

这段代码是一个类方法 detectAndDescribe,用于在图像中检测关键点并提取特征描述子:
将输入的彩色图像 image 转换为灰度图像 gray,这是因为大多数特征提取算法在灰度图像上运行效果更好;

判断是否使用的是 OpenCV 3.x 或更高版本,根据 OpenCV 版本选择适当的 SIFT 特征提取器。
	OpenCV 3.x 使用 cv2.xfeatures2d.SIFT_create()
	OpenCV 2.4.x 使用 cv2.SIFT_create()
使用 SIFT 特征提取器在图像 image 上检测关键点并计算特征描述子;
detectAndCompute 方法返回关键点 (kps) 和特征描述子 (features);

如果使用的是 OpenCV 2.4.x 版本
创建一个 SIFT 特征检测器;
在灰度图像 gray 上检测关键点,返回关键点列表 kps;
创建一个 SIFT 特征提取器
使用 SIFT 特征提取器提取图像 gray 中关键点 kps 对应的特征描述子 features。
将关键点对象中的坐标转换为 NumPy 数组。

返回关键点 kps 和特征描述子 features 的元组。
这段代码的主要功能是根据不同的 OpenCV 版本选择适当的特征提取器和特征描述子提取方法,并返回图像中检测到的关键点和对应的特征描述子。
    def detectAndDescribe(self, image):
        # convert the image to grayscale
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # check to see if we are using OpenCV 3.X
        if self.isv3:
            # detect and extract features from the image
            # 根据 OpenCV 版本选择适当的 SIFT 特征提取器
            # descriptor = cv2.xfeatures2d.SIFT_create()   # OpenCV 3.x 使用
            descriptor = cv2.SIFT_create()    # OpenCV 2.4.x 使用
            (kps, features) = descriptor.detectAndCompute(image, None)
        # otherwise, we are using OpenCV 2.4.X
        else:
            # detect keypoints in the image
            detector = cv2.FeatureDetector_create("SIFT")
            kps = detector.detect(gray)
            # extract features from the image
            extractor = cv2.DescriptorExtractor_create("SIFT")
            (kps, features) = extractor.compute(gray, kps)
        # convert the keypoints from KeyPoint objects to NumPy
        # arrays
        kps = np.float32([kp.pt for kp in kps])
        # return a tuple of keypoints and features
        return (kps, features)

这段代码是一个类方法 matchKeypoints,用于对两组关键点和特征描述子进行特征匹配:

创建一个 Brute-Force 特征匹配器。
Brute-Force 匹配器会计算特征之间的欧氏距离,并返回最匹配的特征。
使用特征匹配器对两组特征描述子进行匹配。
knnMatch 方法返回每个特征描述子的最佳两个匹配结果(k=2)。

初始化实际匹配结果的列表。
遍历所有原始匹配结果。
检查匹配结果是否满足 Lowe's ratio test。
只有当匹配结果有两个,并且第一个匹配的距离小于第二个匹配的距离乘以给定的比例阈值 ratio 时,才被认为是有效匹配。
将有效匹配的训练索引和查询索引添加到匹配列表中。

注意索引的顺序。
如果有效匹配的数量大于 4(至少需要 4 个匹配点才能计算出单应性矩阵)。
构建匹配点对应的第一组点集。
从关键点 kpsA 中根据匹配列表中的训练索引获取点的坐标,并将其转换为 NumPy 数组。
构建匹配点对应的第二组点集。
从关键点 kpsB 中根据匹配列表中的查询索引获取点的坐标,并将其转换为 NumPy 数组。

使用 RANSAC 算法计算两组点集之间的单应性矩阵 H。
reprojThresh 是重投影误差阈值,用于排除外点。
返回匹配列表、单应性矩阵 H 和每个匹配点的状态。
    def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
                       ratio, reprojThresh):
        # compute the raw matches and initialize the list of actual
        # matches
        matcher = cv2.DescriptorMatcher_create("BruteForce")
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
        matches = []
        # loop over the raw matches
        for m in rawMatches:
            # ensure the distance is within a certain ratio of each
            # other (i.e. Lowe's ratio test)
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                matches.append((m[0].trainIdx, m[0].queryIdx))

        # computing a homography requires at least 4 matches
        if len(matches) > 4:
            # construct the two sets of points
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])
            # compute the homography between the two sets of points
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
                                             reprojThresh)
            # return the matches along with the homograpy matrix
            # and status of each matched point
            return (matches, H, status)
        # otherwise, no homograpy could be computed
        return None
这段代码是一个类方法 drawMatches,用于绘制匹配关键点的可视化结果:
获取图像 imageA 和 imageB 的高度和宽度;
创建一个用于可视化的输出图像 vis,大小为两幅图像高度的最大值和两幅图像宽度之和;
数据类型为无符号 8 位整数 (uint8);
将图像 imageA 和 imageB 分别复制到可视化图像 vis 的左侧和右侧,
vis[0:hA, 0:wA] 表示将 imageA 复制到 vis 的左上角,
vis[0:hB, wA:] 表示将 imageB 复制到 vis 的右上角,

遍历所有匹配关键点和匹配状态的元组;
只处理匹配状态为 1(成功匹配)的关键点;
获取匹配关键点在图像上的坐标,
ptA 表示查询图像 imageA 中的关键点坐标,
ptB 表示训练图像 imageB 中的关键点坐标,并根据 wA 的偏移量调整;
在可视化图像 vis 上绘制一条连接匹配关键点的线段,
线段起点为 ptA,终点为 ptB;
(0, 255, 0) 是线段的颜色,这里为绿色,1 是线段的线宽;
返回绘制了匹配关键点的可视化图像 vis;
这段代码的主要功能是创建一个空的可视化图像,然后根据匹配关键点的坐标在图像上绘制连接线段,最后返回绘制了匹配关键点的可视化结果。
    def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # initialize the output visualization image
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB
        # loop over the matches
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # only process the match if the keypoint was successfully
            # matched
            if s == 1:
                # draw the match
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
        # return the visualization
        return vis

3.2 stitch.py

这段代码实现了全景图拼接的主要流程:
导入自定义的 Stitcher 类,用于图像拼接,导入所需的 Python 模块;

创建一个参数解析器对象 ap。
添加命令行参数 -f 和 -s,用于指定要拼接的第一张图像和第二张图像的路径。
--first 和 --second 是对应参数的完整名称,required=True 表示这两个参数是必需的,help 参数用于提供关于参数用途的帮助信息;

解析命令行参数,并将其存储在字典 args 中。

使用 OpenCV 的 imread 函数加载第一张图像和第二张图像,图像的路径从 args 字典中获取;
使用 imutils.resize 函数调整图像的宽度为 400 像素,以加快后续处理速度。

创建一个 Stitcher 对象,用于执行图像拼接。

调用 stitcher 对象的 stitch 方法,将图像 imageA 和 imageB 进行拼接。
showMatches=True 表示在拼接过程中可视化关键点匹配。

使用 OpenCV 的 imshow 函数显示图像。
"Image A"、"Image B"、"Keypoint Matches" 和 "Result" 是显示窗口的标题。
imageA、imageB、vis 和 result 是要显示的图像。

等待键盘输入,直到任意键被按下,这会保持图像窗口的显示状态。
# import the necessary packages
from Panorama import Stitcher
import argparse
import imutils
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True,
                help="path to the first image")
ap.add_argument("-s", "--second", required=True,
                help="path to the second image")
args = vars(ap.parse_args())

# load the two images and resize them to have a width of 400 pixels
# (for faster processing)
imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])
imageA = imutils.resize(imageA, width=400)
imageB = imutils.resize(imageB, width=400)
# stitch the images together to create a panorama
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)
# show the images
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)

该代码通过命令行参数指定要拼接的两张图像,然后加载图像并进行预处理;
接下来,使用自定义的 Stitcher 类执行图像拼接操作:
首先,创建 Stitcher 对象 stitcher;然后,调用 stitch 方法,将图像 imageA 和 imageB 作为参数传递给它进行拼接,showMatches=True 表示在拼接过程中可视化关键点匹配;
拼接完成后,将拼接结果存储在 result 中,将可视化结果存储在 vis 中;
接下来,使用 OpenCV 的 imshow 函数显示图像,cv2.imshow("Image A", imageA) 显示第一张图像,cv2.imshow("Image B", imageB) 显示第二张图像;
cv2.imshow("Keypoint Matches", vis) 显示关键点匹配可视化结果;
cv2.imshow("Result", result) 显示拼接结果;
最后,使用 cv2.waitKey(0) 等待键盘输入,直到任意键被按下,这样可以保持图像窗口的显示状态。

四、关键步骤

4.1 关键点检测和局部不变描述符提取

首先,将输入的图像转换为灰度图像;然后,使用特征检测算法(如SIFT、SURF、ORB等)检测图像中的关键点;

  • SIFT(尺度不变特征变换):
    SIFT 算法在不同尺度和旋转下检测图像中的关键点;
    它使用高斯差分金字塔来寻找具有较大梯度幅值的极值点作为候选关键点;
    对候选关键点进行精确定位和方向分配,并计算局部图像区域的描述符;
  • SURF(加速稳健特征):
    SURF 算法采用了一种基于积分图像的快速计算方法;
    它使用盒状滤波器对图像进行多尺度空间滤波,检测具有较大Hessian矩阵响应的关键点;
    对关键点进行精确定位和方向分配,并计算描述符;
  • ORB(方向鲁棒的二进制描述符):
    ORB 算法结合了 FAST 关键点检测器和 BRIEF 描述符;
    它采用了快速特征检测和计算高效二进制描述符的策略;
    ORB 算法具有较快的速度和良好的性能,特别适用于实时应用;

对于每个关键点,计算其局部区域的特征描述符。最终,得到每个关键点的位置和对应的特征描述符。

4.2 关键点匹配

在给定两个图像的特征描述子(例如SIFT、SURF或ORB)之后,关键点匹配的一般步骤如下:

  • 首先,使用特征检测算法(如SIFT、SURF、ORB等)在两个图像中分别检测出特征点。每个特征点通常由其位置(x, y坐标)和一些局部特征描述子(例如特征向量)表示;
  • 接下来,通过比较两个图像中特征点的描述子,计算它们之间的相似度或距离。常用的方法包括欧氏距离、汉明距离、余弦相似度等;
  • 根据相似度或距离的度量,对特征点进行匹配。通常采用最近邻匹配(Nearest Neighbor)的方法,即将一个特征点与另一个图像中最相似的特征点进行匹配;
  • 为了提高匹配的准确性,可以使用比率测试(Ratio Test)来筛选匹配结果;
  • 比率测试将最近邻距离与次近邻距离进行比较,如果两者之间的比值小于一个阈值,则认为该匹配是可靠的;
  • 根据匹配结果,可以获取两个图像之间的关键点匹配对,每个匹配对包含两个特征点的位置信息。

4.3 RANSAC(随机抽样一致性)

  • 通过 RANSAC 算法对关键点匹配进行筛选,去除错误的匹配;
  • 随机选择一组关键点匹配,估计两个图像之间的透视变换矩阵(即单应性矩阵);
  • 使用估计的透视变换矩阵将一个图像上的点转换到另一个图像上,计算其重投影误差;
  • 根据设定的阈值,判断匹配是否为内点(符合透视变换)或外点(不符合透视变换);
  • 重复上述步骤多次,选择具有最大内点数的透视变换矩阵作为最终的变换矩阵。

4.4 透视变换:

  • 使用估计的透视变换矩阵,对其中一个图像进行透视变换,将其与另一个图像进行对齐;
  • 创建一个新的空白画布,大小适合容纳两个图像的拼接结果;
  • 对其中一个图像进行透视变换,将其映射到新的画布上;
  • 将另一个图像直接复制到新的画布上的对应位置;
  • 两个图像的重叠区域会进行融合或叠加处理,形成最终的全景图像。

总结

以上步骤是全景拼接算法的核心流程,通过检测关键点、提取描述符、匹配关键点、RANSAC 筛选和透视变换,实现将多个图像拼接成全景图像。
  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
压缩包中包含的具体内容: 对给定数据中的6个不同场景图像,进行全景拼接操作,具体要求如下: (1) 寻找关键点,获取关键点的位置和尺度信息(DoG检测子已由KeypointDetect文件夹中的detect_features_DoG.m文件实现;请参照该算子,自行编写程序实现Harris-Laplacian检测子)。 (2) 在每一幅图像中,对每个关键点提取待拼接图像的SIFT描述子(编辑SIFTDescriptor.m文件实现该操作,运行EvaluateSIFTDescriptor.m文件检查实现结果)。 (3) 比较来自两幅不同图像的SIFT描述子,寻找匹配关键点(编辑SIFTSimpleMatcher.m文件计算两幅图像SIFT描述子间的Euclidean距离,实现该操作,运行EvaluateSIFTMatcher.m文件检查实现结果)。 (4) 基于图像中的匹配关键点,对两幅图像进行配准。请分别采用最小二乘方法(编辑ComputeAffineMatrix.m文件实现该操作,运行EvaluateAffineMatrix.m文件检查实现结果)和RANSAC方法估计两幅图像间的变换矩阵(编辑RANSACFit.m 文件中的ComputeError()函数实现该操作,运行TransformationTester.m文件检查实现结果)。 (5) 基于变换矩阵,对其中一幅图像进行变换处理,将其与另一幅图像进行拼接。 (6) 对同一场景的多幅图像进行上述操作,实现场景的全景拼接(编辑MultipleStitch.m文件中的makeTransformToReferenceFrame函数实现该操作)。可以运行StitchTester.m查看拼接结果。 (7) 请比较DoG检测子和Harris-Laplacian检测子的实验结果。图像拼接的效果对实验数据中的几个场景效果不同,请分析原因。 已经实现这些功能,并且编译运行均不报错!
Python全景图像拼接是指将多张照片拼接在一起,以形成一个无缝连接的全景图像。这在旅游、摄影等领域非常流行,因为它能够让人们以更广阔的视野体验美好的风景。实现Python全景图像拼接的过程,分为两个主要部分:图像处理和拼接。 在图像处理步骤中,需要完成以下任务:图像预处理、图像匹配和图像校正。首先,需要对每张照片进行预处理,例如切除相机水平上下翻转或者旋转等人为干扰因素。然后,需要进行图像匹配,找到图像中相同区域的对应位置。在这一过程中,需要使用图像特征检测算法,例如SIFT、SURF和ORB等算法。最后,需要进行图像校正,使得每张照片能够拼接在一起,形成无缝连接的图像。 在拼接步骤中,需要完成以下任务:图片拼接、图像去除以及全景图像渲染。在图片拼接过程中,需要利用图像匹配结果,将每张照片拼接在一起。拼接技术可以使用基于特征点的图像拼接或基于投影变换的图像拼接。接着,可以使用图像去除技术,去除图像中多余的部分,使得全景图像更加自然。最后,需要对全景图像进行渲染,并调整一些参数,例如曝光和色彩平衡,使得全景图像更加美观。 总的来说,Python全景图像拼接技术是一个复杂的过程,需要涉及多种图像处理算法及拼接算法。它可以让人们更好地体验美丽的全景风景,也可以在其他领域中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

701044

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值