目录
第二步:【net网络搭建、loss损失函数、op梯度下降、acc评估模型】
第一步:【网络输入】
data文件夹{0,1,2,3。。。等类},默认224*224*3的图
命令行:python tfrecords.py -i data
或者做成子程序调用
#coding=utf-8
# author:dongjinhua
# data:2010107
import os
import getopt
import tensorflow as tf
from PIL import Image
import sys
'''
制作tfrecords数据:
creat_tfrecords(train_dir)
读取tfrecords数据
images, labels = read_and_decode('./train.tfrecords')
batch数据
img_batch, label_batch = tf.train.shuffle_batch([images, labels],
batch_size=batch_size,
capacity=392,
min_after_dequeue=200)
'''
IMG_W = 224
IMG_H = 224
def creat_tfrecords(imgpath):
cwd = os.getcwd() # 获取当前目录
classes = os.listdir(cwd + imgpath)
writer = tf.python_io.TFRecordWriter("train.tfrecords")
for index, name in enumerate(classes):
class_path = cwd + imgpath + name + "/"
print(class_path)
if os.path.isdir(class_path):
for img_name in os.listdir(class_path):
img_path = class_path + img_name
img = Image.open(img_path)
img = img.resize((IMG_W, IMG_H))
img_raw = img.tobytes() #将图片转化为原生bytes
example = tf.train.Example(features=tf.train.Features(feature={
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[int(name)])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
}))
writer.write(example.SerializeToString()) #序列化为字符串
print(img_name)
writer.close()
def read_and_decode(filename):
#根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})
img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [IMG_W, IMG_H, 3])
# 转换为float32类型,并做归一化处理
img = tf.cast(img, tf.float32)# * (1. / 255)
label = tf.cast(features['label'], tf.int64)
#print 'images的样子是:', img
#print 'label的样子是:', label
#pdb.set_trace()
return img, label
def main(argv):
inputfile = ''
try:
opts, args = getopt.getopt(argv, "hi:o:", ["ifile="])
except getopt.GetoptError:
print ('test.py -i <inputfile>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print ('test.py -i <inputfile>')
sys.exit()
elif opt in ("-i", "--ifile"):
inputfile = arg
inputfile = './' + inputfile + '\\'
creat_tfrecords(inputfile)
if inputfile == '':
print('please test as "python test.py -i <inputfile>"')
if __name__ == '__main__':
# 命令行:python tfrecords.py -i data或者将该文档做成没有main的子程序
main(sys.argv[1:])
'''
if __name__ == '__main__':
images, labels = read_and_decode('./train.tfrecords')
img_batch, label_batch = tf.train.shuffle_batch([images, labels],
batch_size=batch_size,
capacity=392,
min_after_dequeue=200)
'''
第二步:【net网络搭建、loss损失函数、op梯度下降、acc评估模型】
#coding=utf-8
import tensorflow as tf
# 网络(net)
# conv1 卷积层 1
# pooling1_lrn 池化层 1
# conv2 卷积层 2
# pooling2_lrn 池化层 2
# local3 全连接层 1
# local4 全连接层 2
# softmax 全连接层 3
# 损失函数(loss)
# 优化器(梯度下降op)
# 评估(准确率acc)
# 输入images、batch_size、n_classes
def net(images, batch_size, n_classes):
with tf.variable_scope('conv1') as scope:
# 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap
weights = tf.get_variable('weights',
shape=[3, 3, 3, 16],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
with tf.variable_scope('pool1') as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
with tf.variable_scope('conv2') as scope:
weights = tf.get_variable('weights',
shape=[3, 3, 16, 16],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name='conv2')
# pool2 and norm2
with tf.variable_scope('pool2') as scope:
norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
with tf.variable_scope('fc1') as scope:
reshape = tf.reshape(pool2, shape=[batch_size, -1])
dim = reshape.get_shape()[1].value
weights = tf.get_variable('weights',
shape=[dim, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
# local4
with tf.variable_scope('fc2') as scope:
weights = tf.get_variable('weights',
shape=[128, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
# softmax
with tf.variable_scope('softmax_linear') as scope:
weights = tf.get_variable('softmax_linear',
shape=[128, n_classes],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable('biases',
shape=[n_classes],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
return softmax_linear
def losses(logits, labels):
with tf.variable_scope('loss') as scope:
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \
(logits=logits, labels=labels, name='xentropy_per_example')
loss = tf.reduce_mean(cross_entropy, name='loss')
tf.summary.scalar(scope.name + '/loss', loss)
return loss
def trainning(loss, learning_rate):
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step= global_step)
return train_op
def evaluation(logits, labels):
with tf.variable_scope('accuracy') as scope:
correct = tf.nn.in_top_k(logits, labels, 1)
correct = tf.cast(correct, tf.float16)
accuracy = tf.reduce_mean(correct)
tf.summary.scalar(scope.name + '/accuracy', accuracy)
return accuracy
第三步:【保存加载】
第四步:【开始训练】
第五步:【评估验证】
第六步:【训练监测】
tensorboard --logdir=logs
或者直接:http://localhost:6006