conda管理环境+Pytorch

Conda安装       

你之后会遇到不同的项目,需要使用到不同版本的环境。比如这个项目要用到 pytorch 0.4,另一个项目要用到 pytorch 1.0,如果你卸载了0.4版本,安装了1.0版本。那么下一次,你再碰到0.4版本,你就需要卸载1.0版本,安装0.4版本。很折腾。

Anaconda 集成的 conda 包就能够解决这个问题。它可以创造出两个屋子,相互隔离。一个虚环境放 0.4 版本,一个虚环境放 1.0 版本。你需要哪个版本,就进哪个虚环境工作。

  • 使用 conda 指令创建一个虚环境,叫python3.7
conda create -n python3.7 python=3.7

        conda 是指调用 conda ,create 是创建的意思,-n是指后面的名字是虚环境的名字, python是虚环境的名字,python=3.7是指创建的虚环境,是 python3.7版本。弹出提示,输入 y,即可安装

  • 查看conda 环境,右边的 * 号表示,当前你处于哪个环境
conda info --envs
  • 激活虚拟环境
conda activate pytorch

安装 PyTorch 准备

终于到重头戏了,安装 PyTorch了。激动的打开官网,下拉到下面的页面。

(不得不说,PyTorch 在这方面做的真的好,不需要再人工安装 CUDA、cuDNN 之类的,全部都给你解决了。真的良心~以前安装真的繁琐。(吐槽一句,以前超麻烦的)

PyTorch Build 选择 Stable;选择系统;Package,Windows下推荐 conda,Linux 下推荐 pip;Python版本按照Anaconda的版本选择,我这里选择3.6,CUDA 推荐9.2。如果没有显卡的话,选择 None。我的选择如图所示:

复制下面的代码,之后,在开始菜单中,打开 Anaconda Prompt,查看最左边括号中是 base 还是 pytorch。

如果是 base,使用 conda activate pytorch 进入 pytorch 环境中。之后粘贴即可。

果断输入y,之后就是漫长的等待。或者去休息吧,慢慢等着。看看剧啥的,等着它慢慢下吧。如果你的并不慢,恭喜恭喜。

有的时候,下载速度太慢了,可以利用我已经下载好的文件。

链接:https://pan.baidu.com/s/1cyEjHdluc4ufCkvtbgziqA 
提取码:bzfx 
复制这段内容后打开百度网盘手机App,操作更方便哦

将其中的 pytorch-1.3.0-py3.6_cuda92_cudnn7_0.tar 和 cudatoolkit-9.2-0.tar两个文件,复制到刚才 Anaconda 安装的目录下的 pkgs 文件夹中。

这两个文件,只能安装 pytorch1.3.0 和 cuda 9.2,仅限Windows。

之后,在 Anaconda Prompt 命令行窗口,多按几次 Ctrl + C 结束程序。然后,重新复制 PyTorch 安装命令,粘贴到命令行上,进行安装。

7. 验证是否安装成功

(1)在命令行左边为 pytorch 环境中,输入 python

(2)之后,输入 import torch,如果没有报错,意味着 PyTorch 已经顺利安装了

(3)接下来,输入 torch.cuda.is_available,如果是 True,意味着你可以使用 GPU,如果是 False,意味着只能使用CPU。

### 安装 PyTorch 的具体方式 对于 Miniconda3 环境下安装 PyTorch,建议使用先激活特定环境再进行软件包安装的方法。这有助于保持不同项目之间的依赖关系隔离并减少冲突的可能性。 #### 创建和激活新环境 创建一个新的 Python 环境可以确保所使用的库版本不会影响其他项目的运行状态。通过命令 `conda create --name pytorch-env python=3.8` 可以建立名为 `pytorch-env` 并指定 Python 版本为 3.8 的全新环境[^1]。之后利用 `conda activate pytorch-env` 来切换到这个新建好的环境中工作。 #### 使用 Conda 或 Pip 进行安装 一旦处于目标环境中,则可以选择 conda 或者 pip 工具来完成 PyTorch 的部署: - **Conda 方式**: 执行 `conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch` 命令可以直接从官方渠道获取最新稳定版的 PyTorch 和其配套组件 CUDA Toolkit 11.3 (可根据需求调整CUDA版本)[^2]。 - **Pip 方式**: 如果偏好 pip 或遇到某些情况下 conda 渠道更新滞后的问题时,也可以考虑采用 pip 方法来进行安装。例如执行如下指令:`pip install torch torchvision torchaudio` 即可获得最新的 PyTorch 发布版本[^3]。 为了提高国内用户的下载速度,在使用 pip 安装时还可以选择清华镜像源作为索引地址,比如设置参数 `-i https://pypi.tuna.tsinghua.edu.cn/simple`。 ```bash # 利用清华镜像加速pip安装过程 pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值