Dijkstra(上):单源最短路Dijkstra的前世今生与基于Dijkstra的mininum bottleneck问题

临近期末,算法老师留下一个斯坦福公开课的课堂思考题,说本题做出来的同学在期末成绩上+5分,有这等好机会能争取一下还是得争取一下的。本题的思路并不难,主要是基于小顶堆对Dijkstra进行稍做改进。

该思考题如下:

In lecture we define the length of a path to be the sum of the lengths of its edges. Define the bottleneck of a path to be the maximum length of one of its edges. A mininum-bottleneck path between two vertices s and t is a path with bottleneck no larger than that of any other s−t path. Show how to modify Dijkstra’s algorithm to compute a minimum-bottleneck path between two given vertices. The running time should be 𝑂(𝑚log𝑛), as in lecture.

1 Dijkstra

在进行改进Dijkstra之前,我先进行回顾+总结一下Dijkstra。详细请看:

回顾+总结:单源最短路Dijkstra

2. 用Dijkstra处理bottleneck与mininum bottleneck问题

下面结合小顶堆及Dijkstra的思想进行处理mininum bottleneck问题,详细请看:

基于单源最短路Dijkstra解决mininum bottleneck问题

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值