前序遍历
要求二叉树的输出结果为 中 左 右 按照这一个逻辑
递归实现
public static void pre_Print(Node head){
if(head==null)
return;
System.out.println(head);
pre_Print(head.left);
pre_Print(head.right);
}
递归实现有一个特点,就是每一判断个节点函数都走了三次,第一次是正常执行到该节点,第二次是左节点的返回又回到该节点,第三次是右节点的返回回到该节点,即使是子节点,也是如此,因为他也进行了其子节点的判断,只不过判断为空直接返回了。
非递归版本的实现:
public static void bef_Out(Node head){
//基本原理是进行压栈
//压右压左。 左弹
Stack<Node> sta =new Stack<>();
if(head!=null) {
sta.add(head);
while (!sta.empty()) {
Node temp = sta.pop();
System.out.println(temp);
if (temp.right != null)
sta.push(temp.right);
if (temp.left != null)
sta.push(temp.left);
}
}
}
利用栈结构,先把右压入,再压入左这样取结果时候就实现了先输出左 再输出右。
中序遍历
中 序遍历, 要求输出的顺序是 左—中---右
递归实现
public static void mid_Print(TreeNodes head){
if(head==null) return;
mid_Print(head.left);
System.out.println(head);
mid_Print(head.right);
}
逻辑与前序遍历的逻辑基本是一样的 只是将输出的位置换到了中间
非递归的实现
public static void mid_Out(Node head){
//只要有左孩子 就一直压
Stack<Node> sta =new Stack<>();
//中序遍历 能左则左
while(head!=null||!sta.empty()){
if(head!=null){
sta.push(head);
head=head.left;
}else{
head =sta.pop();
System.out.println(head);
head =head.right;
}
}
}
非递归的实现也与前序类似, 因为他要求是能先左则先左,代码逻辑略有不同。最开始添加了一个head!=Null判断是因为中序没有在循环之前将顶端压入,所以利用此判断将其作为程序的第一次入口。然后判断head是否为空,不为空的话直接将其压入,然后将Head变为他的左节点,直到左节点为空了,从栈取出值判断他的右节点。
后序遍历
递归实现
public static void aft_Print(Node head){
if(head==null) return ;
aft_Print(head.left);
aft_Print(head.right);
System.out.println(head);
}
非递归版本
public static void aft_Out(Node head){
Stack<Node> sta =new Stack<>();
Stack<Node> ss =new Stack<>();
if(head!=null) {
sta.add(head);
while (!sta.empty()) {
Node temp = sta.pop();
ss.push(temp);
if (temp.left != null)
sta.push(temp.left);
if (temp.right != null)
sta.push(temp.right);
}
Iterator<Node> iter= ss.iterator();
while(iter.hasNext()){
System.out.println(iter.next());
}
}
}
后序遍历的输出样式为 左 ----右----中 与 前序遍历的 中 ----左----右很类似,前序是因为先插右再插入左 最后的输出位 中左右,那么进行先插入左 再插入右 输出位 中右左,然后根据栈可以将数据逆序,然后将数据存入栈然后再输出就得到了 左右中。
层级遍历
递归实现
public static void level_Pri(Node head,int level){
if(head==null){
return;
}
if(level==1){
System.out.println(head);
return ;
}
level_Pri(head.left,level-1);
level_Pri(head.right,level-1);
}
public static void level_Pri(Node head){
int level =3;
for(int i=1;i<=level;i++){
level_Pri(head,i);
}
}
层级遍历的递归实现相对较为复杂,因为使用递归的话,二叉树往往会直接由一个头结点直接深入到根节点,要做到一层一层遍历,且是从头结点为层起点的向下输出,就要设置一个判断条件来保证。其中level表示二叉树的深度,这样可以通过层级进行二叉树的输出,第一次 让level为1 递归直接判断输出头结束,第二次为level为2 递归判断为1不成立,向下找到左右节点判断,这样就输出了第二层的数据,依次类推。这样就需要我们在外部有一个依次将level传入的函数,下边的重载函数就是算出深度然后利用for循环依次进行输出
非递归实现
public static void level_Out(Node head){
Queue<Node> queue =new LinkedList<>();
queue.add(head);
while(!queue.isEmpty()){
head =queue.poll();
System.out.println(head);
if(head.left!=null){
queue.add(head.left);
}
if(head.right!=null){
queue.add(head.right);
}
}
}
利用栈的先进先出原则 插入左右,然后弹出再插入左右依次输出。
相对来说,中序遍历的非递归实现要比递归实现容易分析,容易想到。