Intruduction
评分预测是推荐系统中常见的任务。大多数方法都是基于协同过滤的,例如PMF等,这类方法最大的问题在于无法对推荐提供可解释性。很多研究表明在推荐中提供可解释性,是非常有用的。缺乏可解释性的推荐不能真正让用户信服。在大多数电商网站中,允许用户评论产品并给予评分,用户评论信息中会通常包含关于产品有用的特征,例如quality, material, color 等。在本文中,评论的有效性usefulness of a review 即用户能否根据用户做出是否购买的决定。
已有研究将用户评论信息整合到隐含因子模型中增强其性能[3, 25–27, 39, 46] 或是生成推荐的解释[11, 32, 44]。尽管取得了较好的成绩,但是却存在两个问题。第一,缺乏评论对被推荐项贡献的建模以及对其他用户有效性;第二,以往研究中的解释通常是对词或短语的抽取,可能会造成评论内容的扭曲。本文是第一个利用评论有效性提升推荐效果和可解释性的工作。
本文提出了Neural Attentional Regression model with Review-level Explanations (NARRE) 模型,模型利用attention机制给每个评论赋予权重。利用用户和被推荐项、还有评论作为多层神经网络的输入,提出了一个权重公式。同时,参考DeepCoNN的方法,用两个并列的神经网络学习用户和被推荐项之间的隐含因子特征。其中一个用于建模用户书写评论的倾向,另外一个建模被推荐项目在评论上的倾向。最后一层,我们利用隐含因子模型[21]并将其扩展为一个神经网络作为评分预测的输出。作者在四个真实数据集做了对比实验,发现所提出的方法表现优于当前最好的方法,例如PMF, NMF, SVD++, HFT以及DeepCoNN等.