定义
机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
《机器学习应对的数学问题类型》
《机器学习可以解决什么问题》
特点
- 自动学习:机器学习算法能够从数据中自动学习模式和规律。
- 泛化能力:学习得到的模型不仅适用于训练数据,还应能很好地预测新数据。
- 自我优化:随着数据量的增长和算法的迭代,模型的性能可以逐步提升。
应用领域
- 专家系统:通过学习专家的知识,系统可以模拟专家的决策过程。
- 自动推理:基于已有知识进行逻辑推理,推导出新的结论。
- 自然语言理解:使计算机能够理解和生成人类语言。
- 模式识别:自动识别图像、声音等感官数据中的模式。
- 计算机视觉:使计算机能够解析和理解视觉信息。
- 智能机器人:使机器人能够自主学习和适应环境。
主要组成部分
- 回归:预测连续值,如房价预测。
- 分类:预测离散标签,如垃圾邮件过滤。
- 聚类:将数据集中的实例分组,发现内在结构。
- 降维:减少数据的维度,简化数据表示。
- 强化学习:通过与环境互动学习最佳行为策略。
- 迁移学习:将一个任务中学到的知识应用到另一个相关任务中。
- 生成模型:学习数据分布,生成新的数据样本。
《分类与聚类的主要区别》
发展趋势
- 深度学习:利用深层神经网络来学习复杂的表征。
- 自动化机器学习(AutoML):自动化模型选择、调参等过程。
- 联邦学习:在分布式设备上训练模型,同时保护数据隐私。
- 可解释性:提高模型的透明度,使其决策过程更加易于理解。