【机器学习】机器学习是什么

定义

机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
《机器学习应对的数学问题类型》
《机器学习可以解决什么问题》

特点

  • 自动学习:机器学习算法能够从数据中自动学习模式和规律。
  • 泛化能力:学习得到的模型不仅适用于训练数据,还应能很好地预测新数据。
  • 自我优化:随着数据量的增长和算法的迭代,模型的性能可以逐步提升。

应用领域

  • 专家系统:通过学习专家的知识,系统可以模拟专家的决策过程。
  • 自动推理:基于已有知识进行逻辑推理,推导出新的结论。
  • 自然语言理解:使计算机能够理解和生成人类语言。
  • 模式识别:自动识别图像、声音等感官数据中的模式。
  • 计算机视觉:使计算机能够解析和理解视觉信息。
  • 智能机器人:使机器人能够自主学习和适应环境。

主要组成部分

  • 回归:预测连续值,如房价预测。
  • 分类:预测离散标签,如垃圾邮件过滤。
  • 聚类:将数据集中的实例分组,发现内在结构。
  • 降维:减少数据的维度,简化数据表示。
  • 强化学习:通过与环境互动学习最佳行为策略。
  • 迁移学习:将一个任务中学到的知识应用到另一个相关任务中。
  • 生成模型:学习数据分布,生成新的数据样本。
    《分类与聚类的主要区别》

发展趋势

  • 深度学习:利用深层神经网络来学习复杂的表征。
  • 自动化机器学习(AutoML):自动化模型选择、调参等过程。
  • 联邦学习:在分布式设备上训练模型,同时保护数据隐私。
  • 可解释性:提高模型的透明度,使其决策过程更加易于理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值