sklearn的主要模块及功能
scikit-learn
(简称 sklearn
)是一个功能全面的机器学习库,它包含了许多模块,每个模块都有特定的功能和应用场景。以下是 sklearn
中的主要模块及其功能、解决的问题和常用方法:
1. sklearn.datasets
- 功能:提供了一些常用的机器学习数据集,如鸢尾花数据集(Iris)、数字数据集(Digits)、波士顿房价数据集(Boston House Prices)等。
- 解决问题:方便开发者快速获取和加载数据集,用于实验和模型训练。
- 常用方法:
load_iris()
load_digits()
load_boston()
make_classification()
make_regression()
2. sklearn.decomposition
- 功能:提供了降维技术,如主成分分析(PCA)、独立成分分析(ICA)、非负矩阵分解(NMF)等。
- 解决问题:减少数据的维度,加速计算速度,提高模型的解释性和性能。
- 常用方法:
PCA()
FastICA()
NMF()
TruncatedSVD()
3. sklearn.dummy
- 功能:提供了一些简单的基线模型,如
DummyClassifier
和DummyRegressor
。 - 解决问题:用于比较其他模型的性能,提供基本的参考点。
- 常用方法:
DummyClassifier(strategy='most_frequent')
DummyRegressor(strategy='mean')
4. sklearn.ensemble
- 功能:提供了集成学习方法,如随机森林(Random Forest)、梯度提升(Gradient Boosting)等。
- 解决问题:通过结合多个弱学习器来提高模型的准确性和鲁棒性。
- 常用方法:
RandomForestClassifier()
RandomForestRegressor()
GradientBoostingClassifier()
GradientBoostingRegressor()
AdaBoostClassifier()
AdaBoostRegressor()
5. sklearn.feature_extraction
- 功能:提供了从文本和图像中提取特征的方法,如词袋模型(Bag of Words)、TF-IDF 矩阵等。
- 解决问题:将非数值数据转换成可用于机器学习模型的形式。
- 常用方法:
CountVectorizer()
TfidfVectorizer()
HashingVectorizer()