【机器学习】sklearn的主要模块及功能

sklearn的主要模块及功能

scikit-learn(简称 sklearn)是一个功能全面的机器学习库,它包含了许多模块,每个模块都有特定的功能和应用场景。以下是 sklearn 中的主要模块及其功能、解决的问题和常用方法:

1. sklearn.datasets

  • 功能:提供了一些常用的机器学习数据集,如鸢尾花数据集(Iris)、数字数据集(Digits)、波士顿房价数据集(Boston House Prices)等。
  • 解决问题:方便开发者快速获取和加载数据集,用于实验和模型训练。
  • 常用方法
    • load_iris()
    • load_digits()
    • load_boston()
    • make_classification()
    • make_regression()

2. sklearn.decomposition

  • 功能:提供了降维技术,如主成分分析(PCA)、独立成分分析(ICA)、非负矩阵分解(NMF)等。
  • 解决问题:减少数据的维度,加速计算速度,提高模型的解释性和性能。
  • 常用方法
    • PCA()
    • FastICA()
    • NMF()
    • TruncatedSVD()

3. sklearn.dummy

  • 功能:提供了一些简单的基线模型,如 DummyClassifierDummyRegressor
  • 解决问题:用于比较其他模型的性能,提供基本的参考点。
  • 常用方法
    • DummyClassifier(strategy='most_frequent')
    • DummyRegressor(strategy='mean')

4. sklearn.ensemble

  • 功能:提供了集成学习方法,如随机森林(Random Forest)、梯度提升(Gradient Boosting)等。
  • 解决问题:通过结合多个弱学习器来提高模型的准确性和鲁棒性。
  • 常用方法
    • RandomForestClassifier()
    • RandomForestRegressor()
    • GradientBoostingClassifier()
    • GradientBoostingRegressor()
    • AdaBoostClassifier()
    • AdaBoostRegressor()

5. sklearn.feature_extraction

  • 功能:提供了从文本和图像中提取特征的方法,如词袋模型(Bag of Words)、TF-IDF 矩阵等。
  • 解决问题:将非数值数据转换成可用于机器学习模型的形式。
  • 常用方法
    • CountVectorizer()
    • TfidfVectorizer()
    • HashingVectorizer()

6. sklearn.feature_selection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值