【机器学习】sklearn核心降维算法比较

sklearn的核心降维算法比较

1. PCA (Principal Component Analysis) - 主成分分析

  • 目标:PCA 的目标是找到数据的主成分,即数据方差最大的方向。它通过线性变换将数据转换到一个新的坐标系中,使得每一个维度都是原始数据的一个线性组合,并且这些新维度是正交的。
  • 应用场景:PCA 通常用于数据预处理阶段,减少数据的维度,去除冗余特征,并且可以用于数据可视化。
  • 优点:简单快速,能有效降低数据维度,同时保留数据的主要特征。
  • 缺点:只能捕捉线性关系,对于非线性关系的数据降维效果不佳。

2. t-SNE (t-distributed Stochastic Neighbor Embedding) - t-分布随机邻居嵌入

  • 目标:t-SNE 的目标是在低维空间中保持样本间的局部相似性,即高维空间中彼此接近的点在低维空间中仍然彼此接近。
  • 应用场景:主要用于数据可视化,特别适用于高维数据的降维。
  • 优点:能够很好地保留数据的局部结构,即使数据具有复杂的非线性关系。
  • 缺点:计算成本较高,不适合大规模数据集;结果可能依赖于初始条件。

3. LDA (Linear Discriminant Analysis) - 线性判别分析

  • 目标:LDA 是一种监督学习方法,它的目标是在保持类间差异最大的同时,最小化类内差异。LDA 试图找到一个投影,使得不同类别的样本在低维空间中尽可能分开。
  • 应用场景:主要用于分类问题中的特征选择和降维,特别是在类别标签已知的情况下。
  • 优点:能够很好地分离不同类别的数据,适用于有标签的数据集。
  • 缺点:假设数据符合高斯分布,且类间协方差矩阵相等。

4. TruncatedSVD - 截断奇异值分解

  • 目标:TruncatedSVD 是 SVD(奇异值分解)的一种简化版本,用于降维。它将数据矩阵分解为三个矩阵的乘积,然后截取前 k 个最大的奇异值对应的左奇异向量和右奇异向量,从而达到降维的目的。
  • 应用场景:适用于稀疏数据集,如文本数据的 TF-IDF 表示。
  • 优点:能够处理非常大的稀疏矩阵,计算效率较高。
  • 缺点:同样只能捕捉线性关系。

源码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA, TruncatedSVD
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.manifold import TSNE

#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值