机器学习可以解决什么问题
机器学习可以解决各种类型的问题,涵盖了从简单的预测到复杂的决策制定。以下是一些常见的机器学习应用领域和问题类型:
监督学习
监督学习是最常见的机器学习任务之一,它涉及训练模型以根据输入数据预测输出标签。常见的监督学习问题包括:
- 分类问题
- 二分类:例如,垃圾邮件识别、疾病诊断(患病/未患病)。
- 多分类:例如,手写数字识别(0-9)、图像分类(猫/狗/鸟)。
sklearn核心分类算法比较
- 回归问题
- 预测连续数值,例如房价预测、股票价格预测、销售额预测。
无监督学习
无监督学习不依赖于标签数据,而是从数据中发现结构或模式。常见的无监督学习问题包括:
-
聚类
- 发现数据中的自然分组,例如客户细分、基因表达数据分析。
- 常用算法有 K-means、DBSCAN、层次聚类等。
-
降维
- 降低数据维度,便于可视化和分析,例如 PCA、