【机器学习】机器学习可以解决什么问题

机器学习可以解决什么问题

机器学习可以解决各种类型的问题,涵盖了从简单的预测到复杂的决策制定。以下是一些常见的机器学习应用领域和问题类型:

监督学习

监督学习是最常见的机器学习任务之一,它涉及训练模型以根据输入数据预测输出标签。常见的监督学习问题包括:

  1. 分类问题
    • 二分类:例如,垃圾邮件识别、疾病诊断(患病/未患病)。
    • 多分类:例如,手写数字识别(0-9)、图像分类(猫/狗/鸟)。
      sklearn核心分类算法比较
  2. 回归问题
    • 预测连续数值,例如房价预测、股票价格预测、销售额预测。

无监督学习

无监督学习不依赖于标签数据,而是从数据中发现结构或模式。常见的无监督学习问题包括:

  1. 聚类

    • 发现数据中的自然分组,例如客户细分、基因表达数据分析。
    • 常用算法有 K-means、DBSCAN、层次聚类等。
  2. 降维

    • 降低数据维度,便于可视化和分析,例如 PCA、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值