170. Leetcode 135. 分发糖果 (贪心算法-两个维度权衡题目)

这篇博客探讨了一个分配糖果的问题,通过先确定右边评分大于左边的情况,再确定左边大于右边的情况,采用贪心算法确保每个孩子都能获得至少比相邻评分低的孩子多一个糖果。代码实现中,先从前向后遍历更新糖果数,然后从后向前遍历处理特殊情况,确保全局最优解。
摘要由CSDN通过智能技术生成

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右 边,如果两边一起考虑一定会顾此失彼。

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中, 评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心: candyVec[i] = candyVec[i - 1] + 1

再确定左孩子大于右孩子的情况(从后向前遍历)

因为如果从前向后遍历,根据 ratings[i + 1] 来确定 ratings[i] 对应的糖果,那么每次都 不能利用上前一次的比较结果了。

所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个 选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是 candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量, 保证第i个小孩的糖果数量即大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩 子获得更多的糖果。

局部最优可以推出全局最优。

class Solution:
    def candy(self, ratings: List[int]) -> int:
        candy_res = [1] * len(ratings)
        for i in range(1, len(ratings)):
            if ratings[i] > ratings[i-1]:
                candy_res[i] = candy_res[i-1] + 1

        for j in range(len(ratings)-2,-1,-1):
            if ratings[j] > ratings[j+1]:
                candy_res[j] = max(candy_res[j],candy_res[j+1] + 1)

        return sum(candy_res)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值