这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右 边,如果两边一起考虑一定会顾此失彼。
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中, 评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心: candyVec[i] = candyVec[i - 1] + 1
再确定左孩子大于右孩子的情况(从后向前遍历)
因为如果从前向后遍历,根据 ratings[i + 1] 来确定 ratings[i] 对应的糖果,那么每次都 不能利用上前一次的比较结果了。
所以确定左孩子大于右孩子的情况一定要从后向前遍历!
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个 选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是 candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量, 保证第i个小孩的糖果数量即大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩 子获得更多的糖果。
局部最优可以推出全局最优。
class Solution:
def candy(self, ratings: List[int]) -> int:
candy_res = [1] * len(ratings)
for i in range(1, len(ratings)):
if ratings[i] > ratings[i-1]:
candy_res[i] = candy_res[i-1] + 1
for j in range(len(ratings)-2,-1,-1):
if ratings[j] > ratings[j+1]:
candy_res[j] = max(candy_res[j],candy_res[j+1] + 1)
return sum(candy_res)