在行列都排好序的矩阵中找数

题目】 给定一个有N*M的整型矩阵matrix和一个整数K, matrix的每一行和每一 列都是排好序的。实现一个函数,判断K 是否在matrix中。 例如: 0 1 2 5 2 3 4 7 4 4 4 8 5 7 7 9 如果K为7, 返回true;  如果K为6,返 回false。
要求】 时间复杂度为O(N+M),额外空间复杂度为O(1)

思路:

1、从右上角的数开始寻找(row=0 col=M-1),比较当前数matrix[row][col]和k的关系

2、如果等于k,返回true表示已经找到

如果比k大,因为矩阵每一列都是排好序,所以在当前数所在的列中,处于当前数下方的数都比k大,则没有必要继续在第col列上寻找,令col = col- 1,重复步骤

如果比k小,因为矩阵每一列都是排好序,所以在当前数所在的行中,处于当前数左方的数都比k小,则没有必要继续在第row行上寻找,令row = row + 1,重复步骤

3、如果找到越界都没有发现与K相等的数,则返回false

def isContain(matrix,k):

    row = 0
    col = len(matrix[0])-1
    
    while row < len(matrix) and col > -1:
        
        if matrix[row][col] == k:
            return True
        elif matrix[row][col] > k:
            col -=1
        else:
            row +=1

    return False
        
isContain([[0,1,2,5],[2,3,4,7],[4,4,4,8],[5,7,7,9]],7)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值