题目】 给定一个有N*M的整型矩阵matrix和一个整数K, matrix的每一行和每一 列都是排好序的。实现一个函数,判断K 是否在matrix中。 例如: 0 1 2 5 2 3 4 7 4 4 4 8 5 7 7 9 如果K为7, 返回true; 如果K为6,返 回false。
要求】 时间复杂度为O(N+M),额外空间复杂度为O(1)
思路:
1、从右上角的数开始寻找(row=0 col=M-1),比较当前数matrix[row][col]和k的关系
2、如果等于k,返回true表示已经找到
如果比k大,因为矩阵每一列都是排好序,所以在当前数所在的列中,处于当前数下方的数都比k大,则没有必要继续在第col列上寻找,令col = col- 1,重复步骤
如果比k小,因为矩阵每一列都是排好序,所以在当前数所在的行中,处于当前数左方的数都比k小,则没有必要继续在第row行上寻找,令row = row + 1,重复步骤
3、如果找到越界都没有发现与K相等的数,则返回false
def isContain(matrix,k):
row = 0
col = len(matrix[0])-1
while row < len(matrix) and col > -1:
if matrix[row][col] == k:
return True
elif matrix[row][col] > k:
col -=1
else:
row +=1
return False
isContain([[0,1,2,5],[2,3,4,7],[4,4,4,8],[5,7,7,9]],7)