机器学习简介
什么是机器学习
- 如果一个系统能够通过执行某个过程改变它的性能,这就是学习(什么是学习)
- 不用编程去指定机器做什么,而是让机器有能力自己学习
- 首先定义任务T,经验E,表现P,如果机器有一个任务T,随着经验E的增多,表现P也会变好,则表示机器正在经验E中学习
三要素
- 模型(机器学习的成果,条件概率分布或决策函数)
- 策略(计算模型的方式)
- 算法
生活中的机器学习应用
- 垃圾邮件分类
- AlphaGo围棋AI
- 医疗行业
- 人声识别
监督学习
学习一个模型,使模型对给定输入做出相应的预测输出,流程如下图
其中自变量x为自变量,是实例的特征向量;y为因变量,是实例的结果。
监督学习主要解决分类与回归两类问题
监督学习实例
已知房价,平米数的训练集如下:
平米数 | 房价(万) |
---|---|
50 | 50 |
80 | 70 |
100 | 90 |
130 | 110 |
150 | ??? |
给定一个平米数,预测该面积房价。
无监督学习
从数据中自主学习,分析数据的类别结构
评分卡介绍
什么是评分卡(信贷场景中)
- 以分数的形式来衡量风险几率的一种手段
- 对未来一段时间内违约/逾期/失联概率的预测
- 通常评分越高越安全
- 根据使用场景分为反欺诈评分卡、申请评分卡、行为评分卡、催收评分卡
为什么要开发评分卡
- 风险控制的一个环节,根据已有数据提供逾期概率指标参考
评分卡的特性
- 稳定性
- 预测能力
- 等价于逾期概率
评分卡开发的常用模型
- 逻辑回归
- 决策树
- 组合模型
基于逻辑回归的评分卡理论依据
一个事件发生的几率(Odds),是指该事件发生的概率与该事件不发生概率的比值。若一个客户违约概率为p,则其正常的概率为1-p,由此可得:
Odds=p1−p
此时,客户违约的概率p可以表示为:
p=Odds1+Odds
评分卡表达式为:
Score=A−Blog(Odds)
其中A、B为常数。由于log函数在 (0→+∞) 单调递增,所以当用户违约几率Odds越大时,Score评分越低。
通过给定
(1)某特定Odds时的Score值 S0 ;
(2)该特定Odds值翻倍时Score增加值 PD0 ;
通过给定值 S0 与 PD0 带入评分卡表达式,可求得A、B。
通过以上分析,求该用户评分Score的问题则转化为求用户违约对数几率 log(Odds) 的问题。
依照二元逻辑回归构造预测函数
hθ(x)=g(θTx)=11+e−θT<