论文解读《DELIGHT: An Efficient Descriptor for Global Localisation using LiDAR Intensities》

本文提出DELIGHT描述子,一种利用激光雷达强度进行全局定位的方法。通过卡方检验比较环境强度分布,实现高效的位置识别。在无需GPS和相机的条件下,DELIGHT结合全局与局部描述子,提供可靠且快速的定位解决方案,适用于大规模环境的wake-up问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接
DELIGHT: An Efficient Descriptor for Global Localisation using LiDAR Intensities

概述
  • 位置识别可用于解决“wake-up”问题和“kidnapped robot”问题,在这些问题中,需要在没有先验信息的情况下估计机器人的位置;
  • 本文所提算法仅仅使用激光雷达数据,且不需要机器人运动。本文将强度信息作为一组直方图编码进一个新的激光雷达强度的描述子——DELIGHT。该描述子使用卡方检验比较周围环境的强度分布直方图来进行编码;算法流程分为两阶段:基于强度的prior估计、基于几何的验证;
  • 全局定位的目标是通过估计局部观测与一张全局地图之间的变换来计算机器人的位置;
  • 由于GPS设施可能不可用,相机在不适宜的光照条件下也会遭受性能降低,本文提出一种新的全局定位方法,该方法仅仅使用三维激光雷达传感器的信息,,而且,本文提出算法的主要创新点在于利用了强度信息,而不是仅仅使用深度信息;
  • 全局定位问题包含两个主要元素:i)先前访问位置的识别;ii)关于现存地图的位置估计;在实际中,就是通过比较在环境中扫描一个具体位置所获得的小点云(local scan)和先前获得的数据(global map),找到相对变换;
  • 许多工作仅仅集中于识别部分而没有位置估计,但两个部分对于实现完整的全局定位都很必要,因此本文为该问题的两个方面都提供了解决方法;
  • 对于三维激光雷达数据的位置识别,典型的方法就是基于利用点云中的确定特征的几何描述子,识别就是找到不同点云间最相似的描述子;
  • 通常有局部和全局描述子,全局描述子对整个局部扫描计算单个统计数字,而局部描述子则从点云中选择多个关键点,从这些关键点计算局部描述子;
  • 全局描述子对于降维和对应搜索比较有效,但是它们不能提供相对变换,通过额外的信息(比如计算视点)又会增加计算的代价;局部描述子能够提供变换,但是处理时间会增加,问题复杂度也会随着地图的扩张而显著提高;
  • 本文首先使用提出的描述子将搜索空间限制在特定区域,然后在这些限制区域中使用基于局部描述子的识别来提供机器人最后的精确位置;
  • 激光雷达数据除了提供目标的空间位置信息(rangeÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值