等价无穷小代换
1−cosx=x2/2=secx−1 1 − c o s x = x 2 / 2 = s e c x − 1
(1+bx)a−1=abx ( 1 + b x ) a − 1 = a b x
求导
(tanx)′=sec2x ( t a n x ) ′ = s e c 2 x
(cotx)′=−csc2x ( c o t x ) ′ = − c s c 2 x
(secx)′=secxtanx ( s e c x ) ′ = s e c x t a n x
(cscx)′=−cscxcotx ( c s c x ) ′ = − c s c x c o t x
(arctanx)′=11+x2 ( a r c t a n x ) ′ = 1 1 + x 2
(arccotx)′=−11+x2 ( a r c c o t x ) ′ = − 1 1 + x 2
(arcsinx)′=11−x2√ ( a r c s i n x ) ′ = 1 1 − x 2
(arcsinx)′=−11−x2√ ( a r c s i n x ) ′ = − 1 1 − x 2
积化和差化积
sina+sinb=2sina+b2cosa−b2 s i n a + s i n b = 2 s i n a + b 2 c o s a − b 2
sina−sinb=2cosa+b2sina−b2 s i n a − s i n b = 2 c o s a + b 2 s i n a − b 2
cosa+cosb=2cosa+b2cosa−