AI 模型 MatterGen

MatterGen AI模型:创新的无机材料生成助手

一、MatterGen的定义与基本原理

MatterGen是微软推出的一款创新的人工智能系统,专用于无机材料设计 。它基于扩散模型构建其基础架构,这种模型类似于DALL - E等图像生成器,但针对三维晶体结构进行了调整 。

在工作过程中,MatterGen通过定义一种适合晶体材料的定制化扩散过程来实现材料生成。晶体材料由其重复单元(单元格)定义,单元格编码原子类型、坐标和周期晶格等信息。MatterGen会为这些成分定义适合其几何形状的破坏过程,例如针对晶格扩散采用对称形式,接近于平均值为训练数据中原子平均密度的立方晶格分布;原子扩散在分类空间中定义,单个原子可被损坏成掩蔽状态。根据破坏后的结构,学习一个分数网络,该网络可分别为原子类型、坐标和晶格输出等变分数,从而无需从数据中学习对称性,这个网络也被称为“基础模型” 。

此外,MatterGen还引入了适配器模块,可在带有属性标签的附加数据集上对“基础模型”进行微调。这有助于根据如化学组成、对称性、磁性、电子和机械性能等各种约束条件,生成满足特定需求的材料,例如生成具有特定化学成分、高磁性密度的磁性材料、特定带隙的半导体材料或者高体模量的超硬材料等 。

MatterGen以60万条来自MaterialsProject和Alexandria等权威数据库的稳定材料数据作为训练数据 。这些数据经过重新计算等处理后,成为模型学习和生成材料的重要依据,使得MatterGen能够理解和生成具有不同特性的无机材料。例如,科学家可以利用它处理材料的周期性和三维几何结构,模拟图像生成模型的去噪过程,从随机结构出发,逐步生成稳定且符合特定要求的材料,如具有特定化学性、机械性、磁性等多种规格的材料,这相对于传统依赖大量试错实验的材料设计方法具有极高的效率 。

二、MatterGen的特点

(一)直接生成新材料

MatterGen最大的特点就是能够根据特定需求直接生成新材料,这与传统发现新材料的方法有根本性的区别。传统方法通常需要筛选数百万个现有化合物,而MatterGen像AI图像生成器通过文本描述创建图片那样,直接生成具有所需特性的材料 。例如在寻找高模量大于400GPa的材料时,传统筛选方法可能需要筛选约40个候选材料才能达到性能瓶颈,而MatterGen却能够持续生成新颖且稳定的候选材料,其生成规模可达传统方法的两倍以上 。

(二)生成的材料性能优良

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值