步骤拆解
SuperMap AIF地理空间AI技术底座的定义和简介
SuperMap AIF地理空间AI技术底座是超图软件在2024年推出的一项创新技术,旨在通过集成多种AI能力,提升空间数据处理和分析的智能化水平。该技术底座具备模型多元化、跨平台、可本地部署等特性,涵盖多个功能模块,包括AI三维数据处理与分析、AI遥感影像处理与解译、AI空间分析、AI图像/视频分析、AI图像生成、AI知识生成和地理空间智能体(GI Agent)等。
SuperMap AIF技术底座的核心功能包括:
- AI三维数据处理与分析:支持自动生成三维城市场景,显著缩短建模时间,提升城市规划和建筑设计的效率。
- AI遥感影像处理与解译:内置AI异源影像匹配模型和遥感解译预训练模型,提升影像匹配精度和几何处理精度。
- AI空间分析:提供多种空间分析工具,支持批量生成训练数据和多波段遥感影像解译模型训练。
- AI图像/视频分析:支持图像和视频的智能分析,提升数据处理能力。
- AI图像生成:通过AI技术生成高质量的图像,支持多种应用场景。
- AI知识生成:利用自然语言处理技术,生成行业知识和智能报告。
- 地理空间智能体GI Agent :基于自然语言大模型,用户可以通过对话形式提出空间数据处理请求,AI自主思考和调用相关工具完成任务。
此外,SuperMap AIF技术底座还积极融入计算机视觉、多模态和自然语言处理等大模型能力,整体提升地理空间软件的智能化水平。该技术底座不仅向上赋能SuperMap基础软件产品和行业应用产品,还与华为合作,基于鲲鹏和昇腾计算基础设施,共同打造地理信息领域的大模型和地理空间智能体。
综上所述,SuperMap AIF地理空间AI技术底座通过集成多种先进的AI技术和功能模块,显著提升了空间数据处理的效率和智能化水平,为行业应用提供了强大的技术支持。
SuperMap AIF的核心技术架构
SuperMap AIF(地理空间AI技术底座)是超图软件在2024年推出的一项核心技术架构,旨在通过集成多种AI能力,提升空间数据处理和分析的效率与智能化水平。以下是SuperMap AIF的核心技术架构:
- 模型多元化:SuperMap AIF支持多种AI模型,包括遥感AI大模型(LIM)、AI行业知识生成、空间规划AI生图和地理空间智能体(AgentX)等。这些模型涵盖了计算机视觉、多模态和自然语言处理等多个方向,为不同应用场景提供技术支持。
- 跨平台能力:SuperMap AIF具备跨平台特性,能够在不同的操作系统和硬件环境下运行,确保在多种平台上提供高性能的服务。
- 本地部署:SuperMap AIF支持本地部署,用户可以根据需要在本地环境中运行AI功能,减少对云服务的依赖,提高数据处理的隐私性和安全性。
- 即拿即用与定制化训练:SuperMap AIF提供了部分即拿即用的功能,同时支持通过AI流程工具进行定制化训练和微调,以满足特定行业和应用的需求。
- AI功能模块:
- 三维数据处理与分析:支持三维数据的处理、分析和可视化,适用于城市规划、建筑设计等领域。
- 遥感影像处理与解译:提供高效的遥感影像处理和解译能力,显著提升遥感数据的生产和解译效率。
- 空间分析:支持多种空间分析功能,如缓冲区分析、叠加分析等。
- 图像/视频分析:提供图像和视频的智能分析能力,适用于环境监测、交通管理等领域。
- 图像生成:支持AI图像生成功能,用于创建高质量的图像内容。
- 知识生成:基于自然语言大模型,支持AI知识生成,提升数据解读和应用的智能化水平。
- 地理空间智能体:提供地理空间智能体功能,支持自动化任务执行和智能决策。
- 行业应用:SuperMap AIF向上赋能于SuperMap基础软件产品和行业应用产品,如SuperMap GIS和SuperMap iEmbed,提升这些产品的智能化水平和用户体验。
- 创新与合作:超图软件与华为等企业合作,基于华为的计算基础设施底座(鲲鹏+昇腾),进一步提升SuperMap AIF的技术能力和应用场景。
综上所述,SuperMap AIF通过其多元化的AI模型、跨平台能力、本地部署支持、即拿即用与定制化训练功能,以及丰富的AI功能模块,为地理空间数据处理和分析提供了强大的技术支持,推动了GIS行业的智能化进程。
SuperMap AIF支持的AI模型类型
SuperMap AIF支持的AI模型类型包括:
- 遥感解译预训练大模型(LIM) :用于遥感影像的精准解译,提升分类精度和解译效果。
- 视觉大模型(SAM)及其行业扩展(G-SAM) :用于图像分割、目标检测等计算机视觉任务。
- 多模态大模型:结合计算机视觉和自然语言处理,支持空间规划AI生图、智能问答和知识归纳等功能。
- 自然语言大模型:用于AI知识生成,包括智能问答和知识归纳。
- 地理空间智能体GI Agent :基于自然语言大模型,支持对话交互和任务自动化。
这些模型具备模型多元化、跨平台和可本地部署的特性,能够满足不同行业应用的需求。
SuperMap AIF在地理空间分析中的应用场景
SuperMap AIF在地理空间分析中的应用场景非常广泛,涵盖了多个领域和功能。以下是主要的应用场景:
- 遥感影像处理与解译:
- 自动检测与去云:SuperMap AIF能够自动检测遥感影像的变形,并进行去云处理,提高影像质量。
- 预训练模型:内置AI遥感解译预训练模型,基于语义信息剔除非地面点,提升几何处理精度。
- 多波段遥感影像解译:支持多波段遥感影像解译模型训练,提升解译精度。
- 三维数据处理与分析:
- 自动化建模:AI自动化构建三维模型,将原本需要数月手工完成的5000多个模型数据处理缩短至数小时,适用于自然资源数字化治理、城市规划等领域。
- LOD 2.0 三维模型:AI自动构建LOD 2.0 三维模型,显著缩短大场景三维模型的构建时间。
- 空间分析:
- 空间规划AI生图:基于SuperMap AIF的AI生图系统内嵌多种约束方式,帮助空间规划工作者快速出图,显著提升工作效率。
- 智能问答与知识生成:提供智能问答和知识生成能力,如智能提问和答案生成,满足行业应用需求。
- 图像/视频分析:
- 图像生成:AI图像生成技术,支持生成高质量的图像和视频。
- 目标检测与分类:结合机器学习和深度学习技术,提供目标检测、地物分类、场景分类等功能。
- **地理空间智能体(GI Agent)**:
- 对话交互:用户通过对话交互提出请求,AI自主思考和调用相关空间智能软件工具完成任务。
- 任务分解与规划:基于自然语言大模型和AI Agent技术,实现对请求的独立思考、规划和任务分解。
- 跨平台与本地部署:
- 模型多元化:SuperMap AIF具备模型多元化、跨平台、可本地部署等特性,支持多种操作系统和硬件平台。
- 即用型功能与定制化训练:提供部分即拿即用的功能,以及可搭配AI流程工具定制化训练微调后使用的功能。
- 行业应用:
- 城市管理与测绘:在城市管理、测绘和空间分析中,SuperMap AIF提供了创新的AI技术应用。
- 自然资源数字化治理:支持自然资源数字化治理,提升资源管理效率。
- 实景三维中国建设:助力实景三维中国建设,提升城市模型数据的生成效率。
综上所述,SuperMap AIF在地理空间分析中的应用场景非常广泛,涵盖了遥感影像处理、三维数据处理、空间分析、图像/视频分析、地理空间智能体等多个领域,为各行业的智能化应用提供了强大的技术支持。
SuperMap AIF与传统GIS技术的差异对比
SuperMap AIF与传统GIS技术的差异主要体现在以下几个方面:
- 智能化水平提升:
- SuperMap AIF集成了多种AI大模型技术,包括计算机视觉、多模态和自然语言处理等,显著提升了遥感影像的生产和解译效率,尤其是在三维建模等具体行业应用中表现突出。
- 传统GIS技术主要依赖于手工测量和绘图,数据处理速度慢,容易出现误差ÿ