数字表面模型(DSM)生成详解

数字表面模型(DSM)的定义和主要用途

数字表面模型(Digital Surface Model,DSM)是一种三维表示地球表面高度的数字化地图,包括表面的自然或人造物体。DSM不仅包含地形的高程信息,还涵盖了地表覆盖物的三维空间信息,如建筑物、植被、道路等。

定义
DSM是一种网格化的栅格数据模型,用于表示每个像素点上可见的最高表面,包括植被和人造特征。它是在数字高程模型(DEM)的基础上发展起来的,突破了DEM仅描述地形高程的限制,将地表形态的范围扩展到了包括植被、建筑物、道路等地面以上的人造和自然物体。

主要用途

  1. 城市规划​:DSM在城市规划中用于确定新建筑的最佳位置,同时考虑到现有基础设施和其他环境特征。
  2. 电信和航空​:在电信行业,DSM用于识别最佳位置放置蜂窝塔和其他通信基础设施。在航空业,DSM用于创建精确的飞行计划,确保飞行员可以安全地避开障碍物。
  3. 森林监测​:DSM用于监测森林生长情况,评估森林健康和生态变化。
  4. 军事应用​:DSM为巡航导弹提供精准的地表高度信息,确保安全通过地形和障碍物。
  5. 导航系统​:DSM在导航系统中用于提供更准确的地形信息,特别是在复杂的城市环境中。
  6. 洪水风险测绘​:DSM用于洪水风险评估,帮助预测洪水可能影响的区域。
  7. 智能交通系统​:DSM在智能交通系统中用于优化交通流量和规划交通基础设施。

数据来源
DSM的数据来源包括:

  • 地形图
  • 遥感材料(如航空摄影、卫星图像)
  • 激光扫描(LiDAR)数据。

技术特点

  • 三维性​:DSM具有真三维特性,可以直观地表示地表和地面物体的空间位置和形状。
  • 高精度​:通过激光扫描等技术,DSM可以达到高精度的高度测量。
  • 广泛的应用​:DSM在多个领域展现出重要应用,如森林监测、城市规划和军事防御。

综上所述,数字表面模型(DSM)是一种重要的地理信息数据模型,广泛应用于城市规划、电信、航空、森林监测、军事防御等多个领域,为各种应用提供了全面和真实的地表形态信息。

生成DSM的主要数据源类型(如LiDAR、航空摄影测量等)

生成DSM的主要数据源类型包括LiDAR(激光雷达)和航空摄影测量。以下是详细说明:

  1. LiDAR技术​:
    • LiDAR技术通过发射激光脉冲并测量反射时间来精确计算地面点的高度,从而生成高精度的DSM。LiDAR数据通常以点云形式提供,包含地面和非地面点的详细信息。这些点云数据经过处理后,可以生成DSM,用于各种应用,如城市规划、地形建模和灾害评估。
    • LiDAR技术的优势在于其高精度和高密度的数据获取能力,尤其适用于复杂地形和植被茂密地区的测量。此外,LiDAR数据的自动化处理程度高,成图周期短,能够快速生成高质量的DSM。
  2. 航空摄影测量​:
    • 航空摄影测量通过高分辨率的航空影像,利用立体匹配和数字摄影测量技术生成DSM。这种方法依赖于地面控制点(GCP)进行校正和坐标转换,以确保数据的准确性。
    • 航空摄影测量的优势在于其成本相对较低,适用于大范围的地形测量。然而,该方法的速度较慢,且在某些区域可能受到天气条件的影响。
  3. 卫星遥感​:
    • 卫星遥感技术通过地球观测卫星数据覆盖更广的地理区域,尽管分辨率可能不如LiDAR或航空摄影,但仍然可以用于生成DSM。多视角高分辨率卫星图像(如WorldView-3)也可以用于生成DSM,尽管这些方法相对较新,性能尚未全面评估。

综上所述,LiDAR技术和航空摄影测量是生成DSM的主要数据源类型,其中LiDAR技术因其高精度和高密度的数据获取能力而被广泛应用于复杂地形和城市规划等领域。

②中各类数据源的处理流程

处理LiDAR、航空摄影测量和卫星遥感数据以生成数字表面模型(DSM)的详细流程如下:

1. 数据采集

  • LiDAR数据​:使用激光雷达设备(如Leica ALS50-II)在飞行高度下采集点云数据。这些数据包含地面和非地面特征的高精度点云,通常以LAS格式存储。
  • 航空摄影测量​:使用无人机(UAV)或固定翼飞机进行航空摄影,获取高分辨率的光学图像。这些图像用于生成三维模型和DSM。
  • 卫星遥感数据​:选择具有立体像对的卫星影像,如中国的高景一号或美国MAXAR的WorldView-2卫星影像。这些影像用于生成高精度的DSM。

2. 数据预处理

  • LiDAR数据预处理​:
    • 去噪​:移除由于拍摄环境产生的噪声等异常点。
    • 分类​:将点云数据分为地面点和其他点(如建筑物、植被等)。地面点通常通过过滤早期回波并收集局部最小值来确定。
  • 航空摄影测量预处理​:
    • 拼接和校正​:对收集的光学图像进行拼接和校正,以提取DSM和DEM。
    • 特征提取​:利用遥感图像处理工具从预处理后的卫星影像中提取高程信息和地表特征。
  • 卫星遥感数据预处理​:
    • 辐射定标​:进行辐射定标,确保影像质量符合后续处理需求。
    • 几何校正​:进行几何校正,确保影像的空间位置信息准确。

3. DSM生成

  • LiDAR数据生成DSM​:
    • 第一回波提取​:从LiDAR点云中提取第一回波数据,生成DSM。每个网格单元中的最高第一回波值用于创建DSM。
    • 插值处理​:使用插值方法(如逆距离加权法)处理不规则分布的点云数据,生成连续的DSM。
  • 航空摄影测量生成DSM​:
    • 空中三角测量​:利用IMAGINE Photogrammetry或Inpho软件进行空中三角测量,确定影像的空间位置信息。
    • 影像匹配​:采用Match-T影像匹配技术,自动提取原始DSM。
    • 滤波处理​:通过滤波手段去除噪声和不必要的细节,保留主要地表特征信息。
  • 卫星遥感数据生成DSM​:
    • 立体匹配​:使用立体匹配算法或光学流算法从卫星影像中提取DSM。
    • 三线阵数据匹配​:获取同一区域三个方向的影像数据,进行匹配处理。

** 4.数据融合与质量控制**

  • 数据融合​:将不同来源的DSM数据进行融合,确保数据的一致性和准确性。
  • 质量检查​:对生成的DSM进行质量检查,确保符合设计要求和标准。不合格情况需重新处理并再次检查,直至满足要求。

** 5.成果生成与输出**

  • 最终产品生成​:生成高精度的DSM产品,进行可视化和分析。
  • 数据整合与输出​:将经过验证和修正的数据进行整合,生成最终的DSM产品,并提供详细的质量评估报告和使用说明。

通过上述流程,可以高效利用LiDAR、航空摄影测量和卫星遥感数据生成高精度的数字表面模型(DSM),为地理空间分析和应用提供可靠的数据基础。

DSM生成的核心算法和技术(如点云分类、影像匹配等)

DSM生成的核心算法和技术主要包括以下几方面:

  1. 影像匹配技术​:
    • 半全局匹配算法(SGM) :广泛应用于DSM生成,通过优化匹配策略提高匹配精度和效率。
    • 基于相关系数的匹配算法​:用于生成密集点云,适用于高分辨率卫星影像。
    • 多视影像密集匹配​:利用多个视角的影像提取特征点,进行同名点自动匹配,获取地面物体的三维信息。
    • 分层动态匹配策略​:根据上一层匹配结果动态确定本层影像分块区域,减少视差范围,提高匹配精度。
  2. 点云分类与处理​:
    • 自动分类与过滤​:使用机器学习算法对点云进行分类,如地面、植被、建筑等。
    • 噪声滤波与目标分割​:去除点云中的噪声和异常值,确保生成的DSM质量。
    • 点云融合​:将不同来源的点云数据进行融合,生成高质量的DSM。
  3. 立体匹配技术​:
    • 结构从运动(SfM)算法​:通过分析相机运动确定3D坐标,适用于无人机影像的摄影测量。
    • 多视立体(MVS)图像处理技术​:结合多视角影像生成高密度点云,构建DSM。
    • ICP(迭代最近点)算法​:用于点云与影像的非刚性配准,优化空中三角测量。
  4. 深度学习方法​:
    • Stereo-Net和DSM-Net模型​:基于深度学习的立体匹配技术,用于高分七号卫星影像的大场景DSM生成。
    • 基于深度学习的多视遥感影像三维地形智能生成技术​:自动化生成高质量DSM及DEM数据。
  5. 数据预处理与后处理​:
    • 影像预处理​:包括格式转换、对比度调整、曝光调整、色彩曲线调整、白平衡编辑和降噪。
    • 点云数据粗差探测及地形特征恢复技术​:解决点云中的漂浮点、孤立点、多余点与混杂点等问题,生成平滑、精度更高的点云数据。
  6. 多源数据融合​:
    • LiDAR点云与无人机影像融合​:利用LiDAR点云数据作控制优化无人机影像空中三角测量,生成高质量DSM。
    • 多源数据融合技术​:结合光学影像、雷达影像和激光雷达数据,提高DSM生成的精度和可靠性。

这些技术和算法共同构成了DSM生成的核心技术体系,广泛应用于航空、卫星影像处理和三维建模等领域。

DSM生成过程中常见挑战及解决方案

在DSM(数字表面模型)生成过程中,常见的挑战及解决方案如下:

  1. 数据量大且复杂​:
    • 挑战​:处理大量立体图像和多视图数据需要巨大的计算资源和时间。
    • 解决方案​:采用云技术部署DSM生产管道,利用IT资源的灵活性,优化运营成本。例如,CO3D任务的DSM生产管道每天处理至少40,000张图像,通过云技术实现高效处理。
  2. 生成精度和完整性​:
    • 挑战​:生成的DSM可能存在噪声、匹配误差和建筑物墙体位置的不确定性,影响模型的准确性和完整性。
    • 解决方案​:使用精炼RPCs(射线投影中心点)和全局优化方法提高DSM的精度和完整性。例如,使用Agisoft Metashape生成的DSM在多视图情况下提高了完整性。此外,基于3D主动形状模型的方法可以进一步提高DSM的准确性。
  3. 算法效率和性能​:
    • 挑战​:生成DSM的算法需要处理大量数据,且在不同地形条件下表现不一。
    • 解决方案​:采用高效的算法如CoSGM,该算法在减少所需立体对数的同时,生成的DSM密度更高,保持了较高的准确性。
  4. 软件工具的灵活性和用户友好性​:
    • 挑战​:缺乏灵活且用户友好的软件工具用于DSM建模、操作和分析。
    • 解决方案​:开发和使用专门的DSM生成工具,如Pix4D Matic和SuperMap iDesktop,这些工具提供了从数据导入到模型生成的完整工作流程,并支持点云编辑和单体化处理。
  5. 组织变革和技
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值