一、量子机器学习框架的核心概念
-
量子计算基础
- 量子比特(Qubit) :可处于叠加态($ |\psi\rangle = \alpha|0\rangle + \beta|1\rangle $),支持并行计算。
- 量子门操作:如Hadamard门(生成叠加态)、CNOT门(实现纠缠)等,用于构建量子电路。
- 量子测量:导致量子态坍缩,输出概率性结果。
-
与经典机器学习的结合方式
- 量子增强算法:利用量子计算加速经典任务(如量子支持向量机、量子主成分分析)。
- 量子-经典混合架构:量子处理器处理特定子任务(如优化、特征提取),经典网络负责整体训练。
- 全量子模型:基于参数化量子电路(Parameterized Quantum Circuit, PQC)的端到端量子学习。
二、主流量子机器学习框架
以下为当前广泛使用的QML框架及其特点:
框架名称 | 开发团队 | 核心功能 | 适用场景 |
---|---|---|---|
TensorFlow Quantum (TFQ) | Google Quantum AI | 集成TensorFlow,支持量子-经典混合模型,提供量子层与经典层的无缝衔接。 | 量子神经网络、混合优化问题 |
Pennylane | Xanadu | 支持自动微分与多后端(IBM Qiskit、Rigetti等),专注于变分量子算法。 | 量子化学模拟、量子优化 |
Qiskit Machine Learning | IBM Quantum | 基于Qiskit生态,提供量子 |